Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vào trag của Tu Vu Dang Khoa có đáp án nha bn, nhớ k cho mik nha!!!!!!!!!! Thanks bn nhiều ^_^~~~~~~~~~~~~~~~~~~
A = 1.4 + 2.5 + 3.6 + ... + 99.102
A = 1.(2 + 2) + 2.(3 + 2) + 3.(4 + 2) + ... + 99.(100 + 2)
A = (1.2 + 2.3 + 3.4 + ... + 99.100) + (1.2 + 2.2 + 3.2 + ... + 99.2)
Đặt B = 1.2 + 2.3 + 3.4 + ... + 99.100
3B = 1.2.(3-0) + 2.3.(4-1) + 3.4.(5-2) + ... + 99.100.(101-98)
3B = 1.2.3 - 0.1.2 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.99.100
3B = 99.100.101
B = 33.100.101 = 333300
A = 333300 + 2.(1 + 2 + 3 + ... + 99)
A = 333300 + 2.(1 + 99).99:2
A = 333300 + 100.99
A = 333300 + 9900
A = 343200
Quy luật kể từ số thứ 3: Số tiếp theo= tổng hai số trước
1 + 7 + 8 + 15 + 23 + 38 + 61 + 99 + 160
= 412
a) 1/5.6 + 1/6.7 + 1/7.8 + ... + 1/24.25
= 1/5 - 1/6 + 1/6 - 1/7 + 1/7 - 1/8 + ... + 1/24 - 1/25
= 1/5 - 1/25
= 4/25
b) 2/1.3 + 2/3.5 + 2/5.7 + ... + 2/99.101
= 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/99 -1/101
= 1 - 1/101
= 100/101
c) 3/1.4 + 3/4.7 + ... + 3/2002.2005
= 1 - 1/4 + 1/4 - 1/7 + ... + 1/2002 - 1/2005
= 1 - 1/2005
= 2004/2005
d) 5/2.7 + 5/7.12 + ... + 5/1997.2002
= 1/2 - 1/7 + 1/7 - 1/12 + ... + 1/1997 - 1/2002
= 1/2 - 1/2002
= 500/1001
a,A = \(\frac{1}{5\times6}+\frac{1}{6\times7}+\frac{1}{7\times8}+...+\frac{1}{24\times25}\)
A\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{24}-\frac{1}{25}\)
A\(=\frac{1}{5}-\frac{1}{25}=\frac{5}{25}-\frac{1}{25}=\frac{4}{25}\)
b, B=\(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{99\times101}\)
B= \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
B=\(1-\frac{1}{101}=\frac{100}{101}\)
c, \(C=\frac{3}{1\times4}+\frac{3}{4\times7}+...+\frac{3}{2002\times2005}\)
C= \(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{2002}-\frac{1}{2005}\)
C= \(1-\frac{1}{2005}=\frac{2004}{2005}\)
d, D= \(\frac{5}{2\times7}+\frac{5}{7\times12}+...+\frac{5}{1997\times2002}\)
D= \(\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{12}+...+\frac{1}{1997}-\frac{1}{2002}\)
D= \(\frac{1}{2}-\frac{1}{2002}=\frac{1001}{2002}-\frac{1}{2002}=\frac{1000}{2002}=\frac{500}{1001}\)
1.3+2.4+3.5+........+99.101
=3+8+15+.....+9999
+>số số hạng của phép tính là (9999-3):5+1=2000,2
=(9999+3).2000,2:2=10003000,2
mik trả lời lại nhá
A=1.3+2.4+3.5+...+99.101A=1.3+2.4+3.5+...+99.101
A=1.(2+1)+2.(3+1)+3.(4+1)+...+99.(100+1)A=1.(2+1)+2.(3+1)+3.(4+1)+...+99.(100+1)
A=1.2+1+2.3+2+3.4+3+...+99.100+99A=1.2+1+2.3+2+3.4+3+...+99.100+99
A=(1.2+2.3+3.4+...+99.100)+(1+2+3+...+99)A=(1.2+2.3+3.4+...+99.100)+(1+2+3+...+99)
Đặt B=1.2+2.3+3.4+...+99.100B=1.2+2.3+3.4+...+99.100
3B=1.2.3+2.3.3+3.4.3+...+99.100.33B=1.2.3+2.3.3+3.4.3+...+99.100.3
3B=1.2.3+2.3.(4−1)+3.4.(5−2)+...+99.100.(101−98)3B=1.2.3+2.3.(4−1)+3.4.(5−2)+...+99.100.(101−98)
3B=1.2.3+2.3.4−1.2.3+3.4.5−2.3.4+...+99.100.101−98.99.1003B=1.2.3+2.3.4−1.2.3+3.4.5−2.3.4+...+99.100.101−98.99.100
3B=99.100.1013B=99.100.101
B=99.100.101:3B=99.100.101:3
B=333300B=333300
Đặt C=1+2+3+...+99C=1+2+3+...+99
C=(99+1).99:2=4950C=(99+1).99:2=4950
Vậy A = 333 300 + 4 950 =338 250
a) Đặt \(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)
\(2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(2A=1-\frac{1}{101}=\frac{100}{101}\)
\(A=\frac{100}{101}\div2=\frac{50}{101}\)
b) Đặt \(B=\frac{1}{3.6}+\frac{1}{6.9}+\frac{1}{9.12}+\frac{1}{12.15}\)
\(3B=\frac{3}{3.6}+\frac{3}{6.9}+\frac{3}{9.12}+\frac{3}{12.15}\)
\(3B=\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+\frac{1}{12}-\frac{1}{15}\)
\(3B=\frac{1}{3}-\frac{1}{15}=\frac{4}{15}\)
\(B=\frac{4}{15}\div3=\frac{4}{45}\)
Đặt \(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)
\(2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(2A=1-\frac{1}{101}=\frac{100}{101}\)
\(A=\frac{100}{101}\div2=\frac{50}{101}\)
Tính :
a) \(M=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}\)
\(=\frac{100}{101}\)
b) \(A=\frac{7}{10.11}+\frac{7}{11.12}+\frac{7}{12.13}+...+\frac{7}{69.70}\)
\(=7.\left(\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+...+\frac{1}{69.70}\right)\)
\(=7.\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+...+\frac{1}{69}-\frac{1}{70}\right)\)
\(=7.\left(\frac{1}{10}-\frac{1}{70}\right)\)
\(=7.\frac{3}{35}\)
\(=\frac{3}{5}\)
c) \(B=\frac{1}{25.27}+\frac{1}{27.29}+\frac{1}{29.31}+...+\frac{1}{73.75}\)
\(=\frac{1}{2}.\left(\frac{2}{25.27}+\frac{2}{27.29}+\frac{2}{29.31}+...+\frac{2}{73.75}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+\frac{1}{29}-\frac{1}{31}+...+\frac{1}{73}-\frac{1}{75}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{25}-\frac{1}{75}\right)\)
\(=\frac{1}{2}.\frac{2}{75}\)
\(=\frac{1}{75}\)
B = 1.2+2.3+3.4+...+99.100
B=1.100
B=100
C=1.3+2.4+3.5+4.6+...+9.11
C=1.(2+1)+2.(3+1)+3.(4+1)+4.(5+1)+...+9.(10+1)
C=1.2+1+2.3+1+3.4+1+4.5+1+...+9.10+1
C=(1.2+2.3+3.3+4.5+...+9.10)+(1+1+1+1+..+1)
C=1.10+10
C=10+10
C=20
a) B = 1.2+2.3+3.4+..+99.100
=>3B=1.2.3+2.3.3+3.4.3+...+99.100.3
3B = 1.2.3+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)
3B = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5-2.3.4+...+99.100.101-98.99.100
3B = (1.2.3+2.3.4+3.4.5+..+99.100.101) - (1.2.3+2.3.4+...+98.99.100)
3B = 99.100.101
\(B=\frac{99.100.101}{3}=333300\)
b) C = 1.3+2.4+3.5+4.6+...+9.11
C = (2-1).(2+1)+(3-1).(3+1) + (4-1).(4+1)+(5-1).(5+1)+...+(10-1).(10+1)
C = 22 - 1 + 32 - 1 + 42 - 1 + 52 - 1 +...+102 - 1
C = (22+32+42+52+...+102) -(1+1+...+1)
...
\(A=1.\left(2+2\right)+2.\left(3+2\right)+3.\left(4+2\right)+....+99.\left(100+2\right)\)
\(A = (1.2 + 2.3 + 3.4 + ... + 99.100) + (1.2 + 2.2 + 3.2 + ... + 99.2)\)
\(Đặt B = 1.2 + 2.3 + 3.4 + ... + 99.100\)
\(3B = 1.2.(3-0) + 2.3.(4-1) + 3.4.(5-2) + ... + 99.100.(101-98)\)
\(3B = 1.2.3 - 0.1.2 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.99.100\)
\(3B = 99.100.101\)
\(B = 33.100.101 = 333300\)
\(A = 333300 + 2.(1 + 2 + 3 + ... + 99)\)
\(A = 333300 + 2.(1 + 99).99:2\)
\(A = 333300 + 100.99\)
\(A = 333300 + 9900\)
\(A = 343200\)
a. A = 1.4 + 2.5 + 3.6 +...+ 99.102
= 1( 2 +2) + 2(3+2) +...+ 99 (100 +2)
= 1.2 + 1.2 +2.3 + 2.2 +...+ 99 .100 +99 . 2
= ( 1.2 +2.3 + 3.4 +...+99 . 100) + 2(1 + 2 + 3+...+99)
= 333300 + 9900 = 343 200
b. B = 1.3 + 2.4 + 3.5 +...+ 99.101
= 1(2 +1) + 2(3 +1) + 3(4 +1) +...+ 99(100 +1)
= 1.2 + 1 + 2.3 + 2 + 3.4 +...+ 99. 100 +99
= ( 1.2 + 2.3 + 3.4 +...+ 99.100) + (1+2+...+99)
= 333300 + 4950 = 338 250
c. C = 4 + 12 + 24 +...+ 19404 + 19800
1/2C = 1.2 + 2.3 + 3.4 +...+ 98.99 + 99.100
1/2 C = 333300
C = 333300 : 1/2 = 666600