Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
a. \(\frac{5}{1.2}+\frac{5}{2.3}+\frac{5}{3.4}+...+\frac{5}{99.100}\)
\(=5.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)
\(=5.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=5.\left(1-\frac{1}{100}\right)\)
\(=5.\frac{99}{100}\)
\(=\frac{99}{20}\)
b. \(\frac{4}{1.3}+\frac{4}{3.5}+\frac{4}{5.7}+...+\frac{4}{99.101}\)
\(=2.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)
\(=2.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{4}{2}.\left(1-\frac{1}{101}\right)\)
\(=2.\frac{100}{101}\)
\(=\frac{200}{101}\)
a) 1/1.2 + 1/2.3 + 1/3.4 +...+ 1/2003.2004 = 1/1 - 1/2 +1/2 - 1/3 +...+ 1/2003 -1/2004 = 1 - 1/2004
b) Đặt B = 1/1.3 + 1/3.5 + 1/5.7 +...+ 1/2003.2005 => 2B = 2(1/1.3 + 1/3.5 + 1/5.7 +...+ 1/2003.2005) => 2B = 2/3.5 + 2/5.7 + 2/7.9 +...+ 2/2003.2005 => 2B = 1/3 - 1/5 + 1/5 - 1/7 +1/7 - 1/9 +...+ 1/2003 - 1/2005 => 2B = 1/3 - 1/2005 = 2012/6015 => B = 2012/6015 : 2 = 1001/6015
( Cái này là để bạn hiểu thêm cách mình làm ở trên : C/m : a/k.(k+a) = a/k - a/k+a
Ta có : a/k.(k+a) = (k+a) - k/k.(k+a) = k+a/k.(k+a) - k/k.(k+a) = a/k - a/k+a)
Bấm đúng cho mình nhe
\(\frac{5}{1.2}+\frac{5}{2.3}+...+\frac{5}{99.100}-2x=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)
\(5\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)-2x=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\right)\)
\(5\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)-2x=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)\(5\left(1-\frac{1}{100}\right)-2x=\frac{1}{2}\left(1-\frac{1}{99}\right)\)
\(5.\frac{99}{100}-2x=\frac{1}{2}.\frac{98}{99}\)
\(\frac{99}{20}-2x=\frac{49}{99}\)
\(2x=\frac{99}{20}-\frac{49}{99}\)
\(2x=\frac{8821}{1980}\)
\(x=\frac{8821}{1980}:2\)
\(x=\frac{8821}{3960}\)
A=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{5.6}\)
=\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}\)
=1\(-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}\)
=\(\dfrac{47}{60}\)
B=\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\)=
\(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...\dfrac{1}{99}+\dfrac{1}{101}\)
=\(1-\dfrac{1}{101}\)
=\(\dfrac{100}{101}\)
A=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{5.6}\)
= \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}\)
=\(1-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}\)
= \(\dfrac{47}{60}\)
B= \(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\)
= \(2\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
= 2\(\left(1-\dfrac{1}{101}\right)\)
= \(\dfrac{200}{101}\)
s = 1-1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5
S=1 + (-1/2 +1/2)+...+(-1/4 + 1/4 ) +-1/5
S = 1 + 0 +0 +...+ 0 +-1/5
S= 1 + -1/5
S = 4/5
Bài 5:
a) Ta có: \(A=1\cdot2+2\cdot3+3\cdot4+...+9\cdot10\)
\(\Leftrightarrow3\cdot A=3\cdot\left(1\cdot2+2\cdot3+3\cdot4+...+9\cdot10\right)\)
\(\Leftrightarrow3A=1\cdot2\cdot\left(3-0\right)+2\cdot3\cdot\left(4-1\right)+3\cdot4\cdot\left(5-2\right)+...+9\cdot10\cdot\left(11-8\right)\)
\(\Leftrightarrow3A=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+3\cdot4\cdot5-2\cdot3\cdot4+...+8\cdot9\cdot10-8\cdot9\cdot10+9\cdot10\cdot11\)
\(\Leftrightarrow3\cdot A=9\cdot10\cdot11=90\cdot11=990\)
hay A=330
Vậy: A=330
Ta có:
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)
\(\Rightarrow A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)
\(\Rightarrow A=\frac{1}{1}-\frac{1}{2018}=\frac{2017}{2018}\)
\(B=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2015.2017}\)
\(\Rightarrow B=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2015}-\frac{1}{2017}\right)\)
\(\Rightarrow B=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{2017}\right)=\frac{1}{2}.\frac{2016}{2017}\)
\(\Rightarrow B=\frac{1008}{2017}\)
a) A = 149 150 b) B = 505 203