K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

còn cần không bạn, mk làm cho

27 tháng 4 2019

1.

a. \(\frac{5}{1.2}+\frac{5}{2.3}+\frac{5}{3.4}+...+\frac{5}{99.100}\)

\(=5.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)

\(=5.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(=5.\left(1-\frac{1}{100}\right)\)

\(=5.\frac{99}{100}\)

\(=\frac{99}{20}\)

27 tháng 4 2019

b. \(\frac{4}{1.3}+\frac{4}{3.5}+\frac{4}{5.7}+...+\frac{4}{99.101}\)

\(=2.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)

\(=2.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{4}{2}.\left(1-\frac{1}{101}\right)\)

\(=2.\frac{100}{101}\)

\(=\frac{200}{101}\)

24 tháng 6 2015

a) 1/1.2 + 1/2.3 + 1/3.4 +...+ 1/2003.2004 = 1/1 - 1/2 +1/2 - 1/3 +...+ 1/2003 -1/2004 = 1 - 1/2004

b) Đặt B = 1/1.3 + 1/3.5 + 1/5.7 +...+ 1/2003.2005 => 2B = 2(1/1.3 + 1/3.5 + 1/5.7 +...+ 1/2003.2005) => 2B = 2/3.5 + 2/5.7 + 2/7.9 +...+ 2/2003.2005 => 2B = 1/3 - 1/5 + 1/5 - 1/7 +1/7 - 1/9 +...+ 1/2003 - 1/2005 => 2B = 1/3 - 1/2005 = 2012/6015 => B = 2012/6015 : 2 = 1001/6015

( Cái này là để bạn hiểu thêm cách mình làm ở trên : C/m : a/k.(k+a) = a/k - a/k+a

Ta có : a/k.(k+a) = (k+a) - k/k.(k+a) = k+a/k.(k+a) - k/k.(k+a) = a/k - a/k+a)

Bấm đúng cho mình nhe

21 tháng 2 2018

sai rồi

2 tháng 8 2015

bạn lên mạng tra từng câu 1 sẽ có

3 tháng 8 2015

ukm cảm ơn bạn nhìu

 

27 tháng 6 2015

 

\(\frac{5}{1.2}+\frac{5}{2.3}+...+\frac{5}{99.100}-2x=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)

\(5\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)-2x=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\right)\)

\(5\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)-2x=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)\(5\left(1-\frac{1}{100}\right)-2x=\frac{1}{2}\left(1-\frac{1}{99}\right)\)

\(5.\frac{99}{100}-2x=\frac{1}{2}.\frac{98}{99}\)

\(\frac{99}{20}-2x=\frac{49}{99}\)

\(2x=\frac{99}{20}-\frac{49}{99}\)

\(2x=\frac{8821}{1980}\)

\(x=\frac{8821}{1980}:2\)

\(x=\frac{8821}{3960}\)

x + 25 = 64

x         = 64 - 25

x         = 39

Vậy x = 39

Bài 5:

a) Ta có: \(A=1\cdot2+2\cdot3+3\cdot4+...+9\cdot10\)

\(\Leftrightarrow3\cdot A=3\cdot\left(1\cdot2+2\cdot3+3\cdot4+...+9\cdot10\right)\)

\(\Leftrightarrow3A=1\cdot2\cdot\left(3-0\right)+2\cdot3\cdot\left(4-1\right)+3\cdot4\cdot\left(5-2\right)+...+9\cdot10\cdot\left(11-8\right)\)

\(\Leftrightarrow3A=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+3\cdot4\cdot5-2\cdot3\cdot4+...+8\cdot9\cdot10-8\cdot9\cdot10+9\cdot10\cdot11\)

\(\Leftrightarrow3\cdot A=9\cdot10\cdot11=90\cdot11=990\)

hay A=330

Vậy: A=330

26 tháng 4 2017

A=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{5.6}\)

=\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}\)

=1\(-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}\)

=\(\dfrac{47}{60}\)

B=\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\)=

\(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...\dfrac{1}{99}+\dfrac{1}{101}\)

=\(1-\dfrac{1}{101}\)

=\(\dfrac{100}{101}\)

25 tháng 4 2017

A=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{5.6}\)

= \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}\)

=\(1-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}\)

= \(\dfrac{47}{60}\)

B= \(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\)

= \(2\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)

= 2\(\left(1-\dfrac{1}{101}\right)\)

= \(\dfrac{200}{101}\)

23 tháng 8 2021

a) \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2003.2004}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2003}-\dfrac{1}{2004}=1-\dfrac{1}{2004}=\dfrac{2003}{2004}\)b)Đặt  \(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2003.2005}\)

\(\Rightarrow2A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{2003.2005}=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2003}-\dfrac{1}{2005}=1-\dfrac{1}{2005}=\dfrac{2004}{2005}\)\(\Rightarrow A=\dfrac{1002}{2005}\)

a: Ta có: \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2003\cdot2004}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2003}-\dfrac{1}{2004}\)

\(=\dfrac{2003}{2004}\)

28 tháng 3 2018

s = 1-1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5

S=1 + (-1/2 +1/2)+...+(-1/4 + 1/4 ) +-1/5

S = 1 + 0 +0 +...+ 0 +-1/5

S= 1 + -1/5

S = 4/5

28 tháng 3 2018

S=1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5

S=1-1/5

S=4/5.

P=1/1.3+1/3.5+1/5.7+1/7.9

2P=2/1.3+2/3.5+2/5.7+2/7.9

2P=1/1-1/3+1/3-1/5+1/5-1/7+1/7-1/9

2P=1-1/9=8/9

P=8/9:2

P=4/9.

Chac chan dung nha ban.k cho minh nhe