K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2016

                                     \(A=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2006}}\)

                                   \(3A=1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{2005}}\)

                                   \(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2005}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2006}}\right)\)

                                   \(\Rightarrow2A=1-\frac{1}{3^{2006}}\)

                                  \(\Rightarrow A=\frac{1-\frac{1}{3^{2006}}}{2}\)

                                      Ủng hộ nha ,chúc bn học tốt !!!

8 tháng 7 2016

Tính A nhá 

7 tháng 9 2016

Mẫu số của A \(=1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+2016}\)

\(=\frac{1}{\left(1+0\right).2:2}+\frac{1}{\left(2+1\right).2:2}+\frac{1}{\left(3+1\right).3:2}+\frac{1}{\left(4+1\right).4:2}+...+\frac{1}{\left(2016+1\right).2016:2}\)

\(=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{2016.2017}\)

\(=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2016.2017}\right)\)

\(=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2016}-\frac{1}{2017}\right)\)

\(=2.\left(1-\frac{1}{2017}\right)\)

\(=2.\frac{2016}{2017}=2.2016:2017\)

\(A=\left(2.2016\right):\left(2.2016:2017\right)\)

\(A=2.2016:2:2016.2017\)

\(A=2017\)

7 tháng 9 2016

\(A=\frac{2.2016}{1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+2016}}\)

\(A=\frac{2.2016}{1+\frac{1}{2.3:2}+\frac{1}{3.4:2}+\frac{1}{4.5:2}+..+\frac{1}{2016.2017:2}}\)

\(A=\frac{4032}{1+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{2016.2017}}\)

\(A=\frac{4032}{1+2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+..+\frac{1}{2016.2017}\right)}\) .

\(A=\frac{4032}{1+2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2016}-\frac{1}{2017}\right)}\)

\(A=\frac{4032}{1+2\left(\frac{1}{2}-\frac{1}{2017}\right)}=\frac{4032}{1+\frac{2015}{2017}}\)

\(A=2017\)

7 tháng 9 2016

Mẫu số \(=1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+2016}\)

\(=\frac{1}{\left(0+1\right).2:2}+\frac{1}{\left(1+2\right).2:2}+\frac{1}{\left(1+3\right).3:2}+\frac{1}{\left(1+4\right).4:2}+...+\frac{1}{\left(1+2016\right).2016:2}\)

\(=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{2016.2017}\)

\(=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2016.2017}\right)\)

\(=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2016}-\frac{1}{2017}\right)\)

\(=2.\left(1-\frac{1}{2017}\right)\)

\(=2.\frac{2016}{2017}=2.2016:2017\)

\(A=\left(2.2016\right):\left(2.2016:2017\right)\)

\(A=2.2016:2:2016.2017\)

\(A=2017\)