Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+...+\frac{1}{41.45}\)
\(=\frac{1}{4}.\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}\right)\)
\(=\frac{1}{4}.\left(1-\frac{1}{45}\right)\)
\(=\frac{1}{4}.\frac{44}{45}\)
\(=\frac{11}{45}\)
Đặt \(\frac{1}{1\cdot5}+\frac{1}{5\cdot9}+\frac{1}{9\cdot13}+\frac{1}{13\cdot17}+...+\frac{1}{41\cdot45}\) là A.
Ta có:
\(A=\frac{1}{1\cdot5}+\frac{1}{5\cdot9}+\frac{1}{9\cdot13}+\frac{1}{13\cdot17}+...+\frac{1}{41\cdot45}\)
\(4A=4\left(\frac{1}{1\cdot5}+\frac{1}{5\cdot9}+\frac{1}{9\cdot13}+\frac{1}{13\cdot17}+...+\frac{1}{41\cdot45}\right)\)
\(4A=\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}+...+\frac{4}{41\cdot45}\)
\(4A=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+...+\frac{1}{41}-\frac{1}{45}\)
\(4A=1-\frac{1}{45}\)
\(4A=\frac{44}{45}\)
\(A=\frac{44}{45}:4\)
\(A=\frac{11}{45}\)
Vậy \(\frac{1}{1\cdot5}+\frac{1}{5\cdot9}+\frac{1}{9\cdot13}+\frac{1}{13\cdot17}+...+\frac{1}{41\cdot45}=\frac{11}{45}\)
Đề?
\(\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+...+\frac{1}{41.45}\)
\(=\frac{1}{4}.\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+...+\frac{1}{41}-\frac{1}{45}\right)\)
\(=\frac{1}{4}.\left(\frac{1}{5}-\frac{1}{45}\right)\)
\(=\frac{1}{4}.\frac{8}{45}=\frac{2}{45}\)
A= 1/5.9+1/9.13+1/13.17+1/17.21+1/21.25
4A= 4/5.9+4/9.13+4/13.17+4/17.21+4/21.25
4A= (1/5-1/9)+(1/9-1/13)+(1/13-1/17)+(1/17-1/21)+(1/21-1/25)
4A= 1/5- 1/25
4A= 4/25
A= 4/25 :4
A= 1/25
a) \(A=98+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}\)(có 98 phân số nên ta cộng 1 vào mỗi phân số)
\(A=\left(\frac{1}{2}+1\right)+\left(\frac{1}{3}+1\right)+...+\left(\frac{1}{99}+1\right)\)
\(A=\frac{3}{2}+\frac{4}{3}+...+\frac{100}{99}\)
Và \(B=\frac{3}{2}+\frac{4}{3}+...+\frac{100}{99}\)
\(\Rightarrow\frac{A}{B}=\frac{\frac{3}{2}+\frac{4}{3}+...+\frac{100}{99}}{\frac{3}{2}+\frac{4}{3}+...+\frac{100}{99}}=1\)
b) \(A=2018+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}\)(có 2018 phân số nên ta cộng 1 vào mỗi phân số)
\(A=\left(\frac{1}{2}+1\right)+\left(\frac{1}{3}+1\right)+...+\left(\frac{1}{2019}+1\right)\)
\(A=\frac{3}{2}+\frac{4}{3}+...+\frac{2020}{2019}\)
Và \(B=\frac{3}{2}+\frac{4}{3}+...+\frac{2020}{2019}\)
\(\Rightarrow\frac{A}{B}=\frac{\frac{3}{2}+\frac{4}{3}+...+\frac{2020}{2019}}{\frac{3}{2}+\frac{4}{3}+...+\frac{2020}{2019}}=1\)
c) \(A=\frac{99}{1}+\frac{98}{2}+...+\frac{1}{99}\)
\(A=99+\frac{98}{2}+...+\frac{1}{99}\)(có 98 phân số nên ta cộng 1 vào từng phân số)
\(A=\left(\frac{98}{2}+1\right)+\left(\frac{97}{3}+1\right)+...+\left(\frac{1}{99}+1\right)+1\)
\(A=\frac{100}{2}+\frac{100}{3}+...+\frac{100}{99}+1\)
\(A=100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)\)
Và \(B=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\)
\(\Rightarrow\frac{A}{B}=\frac{100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}}=100\)
a)\(B=\frac{3}{2}+\frac{4}{3}+\frac{5}{4}+...+\frac{100}{99}\)
\(B=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{4}\right)+...+\left(1+\frac{1}{99}\right)\)
\(\Rightarrow B=\left(1+1+1+...+1\right)+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}\right)\)
\(\Rightarrow B=98+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}\)
\(\Rightarrow A:B=\frac{A}{B}=\frac{98+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}}{98+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}}=1.\)
Vậy \(A:B=1.\)
b)\(B=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{4}\right)+...+\left(1+\frac{1}{2019}\right)\)
\(\Rightarrow B=\left(1+1+1+...+1\right)+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\right)\)
\(\Rightarrow B=2018+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\)
\(\Rightarrow A:B=\frac{A}{B}=\frac{2018+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}}{2018+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}}=1.\)
Vậy \(A:B=1.\)
c)\(A=\left(1+1+...+1\right)+\frac{98}{2}+\frac{97}{3}+...+\frac{2}{98}+\frac{1}{99}\)
\(A=\left(1+\frac{98}{2}\right)+\left(1+\frac{97}{3}\right)+...+\left(1+\frac{2}{98}\right)+\left(1+\frac{1}{99}\right)\)
\(A=\frac{100}{2}+\frac{100}{3}+...+\frac{100}{98}+\frac{100}{99}\)
\(A=100\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{98}+\frac{1}{99}\right)\)
\(\Rightarrow A:B=\frac{A}{B}=\frac{100\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{98}+\frac{1}{99}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{98}+\frac{1}{99}}=1.\)
Vậy \(A:B=1.\)
a, \(2\dfrac{1}{3}+4\dfrac{1}{5}+4\dfrac{1}{3}\)
\(=\dfrac{7}{3}+\dfrac{21}{5}+\dfrac{13}{3}\)
\(=\dfrac{1}{3}\left(7+13\right)+\dfrac{21}{5}\)
\(=\dfrac{20}{3}+\dfrac{21}{5}=\dfrac{100+63}{15}=\dfrac{163}{15}\)
b, \(5\dfrac{3}{4}-4\dfrac{1}{2}.3\dfrac{7}{8}\)
\(=\dfrac{23}{4}-\dfrac{9}{2}.\dfrac{31}{8}\)
\(=\dfrac{23}{4}-\dfrac{279}{16}=\dfrac{92-279}{16}=-\dfrac{187}{16}\)
c, \(1\dfrac{1}{2}.3\dfrac{2}{3}.4\dfrac{3}{4}\)
\(=\dfrac{3}{2}.\dfrac{11}{3}.\dfrac{19}{4}=\dfrac{209}{8}\)
d, \(6\dfrac{4}{5}:2\dfrac{3}{4}:1\dfrac{1}{2}\)
\(=\dfrac{34}{5}:\dfrac{11}{4}:\dfrac{3}{2}\)
\(=\left(\dfrac{34}{5}.\dfrac{4}{11}\right).\dfrac{2}{3}=\dfrac{136}{55}.\dfrac{2}{3}=\dfrac{272}{165}\)
bài này nâng cao lớp 6 mk giải rồi bạn nhờ ai giảng hộ nha nếu bn 5 lên 6
B=1/4.(4/1.5+4/5.9+......+4/25.29)
B=1/4.(1-1/5+1/5-1/9+.....+1/25-1/29)
B=1/4.(1-1/29)
B=1/4.28/29
B=7/29
\(B=\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+\frac{1}{17.21}+\frac{1}{21.25}+\frac{1}{25.29}\)
\(\Rightarrow4B=\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+\frac{4}{17.21}+\frac{4}{21.25}+\frac{4}{25.29}\)
\(\Rightarrow4B=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+\frac{1}{17}-\frac{1}{21}+\frac{1}{21}-\frac{1}{25}+\frac{1}{25}-\frac{1}{29}\)
\(\Rightarrow4B=1-\frac{1}{29}\)
\(\Rightarrow4B=\frac{29}{29}-\frac{1}{29}=\frac{28}{29}\)
\(\Rightarrow B=\frac{28}{29}:4=\frac{28}{29}.\frac{1}{4}=\frac{7}{29}\)
Vậy ....
a)1/3+1/4+2/3+3/4
=(1/3+2/3)+(1/4+3/4)
=1+1
=2.
b)1/2+1/3-1/5+1/6
=(1/2+1/3+1/6)-1/5
=1-1/5
=4/5
c)2/3x4/5+1/3x4/5
=4/5x(2/3+1/3)
=4/5x1
=4/5
d)2/3x4/5-1/3x4/5
=4/5x(2/3-1/3)
=4/5x1/3
=4/15
a) A = 4/5.9 + 4/9.13 + 4/13.17 + ... + 4/41/45
A = 1/5 - 1/9 + 1/9 - 1/13 + 1/13 - 1/17 + ... + 1/41 - 1/45
A = 1/5 - 1/45
A = 8/45
b) B = ( 1 - 1/2 ) . ( 1 - 1/3 ) . ( 1 - 1/4 ) . ..... . ( 1 - 1/100 )
B = 1/2 . 2/3 . 3/4 . .... . 99/100
B = \(\frac{1.2.3.......99}{2.3.4......100}\)
B = 1/100
B = \(\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+...+\left(1-\frac{1}{100}\right)\)
B = \(\frac{1}{2}.\frac{2}{3}.....\frac{99}{100}\)
B = \(\frac{1}{100}\)