K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2018

A=1-1/5+1/5-1/9+...+1/(n-4)-1/n

A=1-1/n

A=n-1/n

3 tháng 8 2018

= 1-1/5+1/5-1/9+1/9-1/13+...+1/n-4-1/n

=1-1/n

= n-1/n

2 tháng 8 2018

a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

  \(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

  \(=\frac{1}{1}-\left(\frac{1}{2}-\frac{1}{2}\right)-\left(\frac{1}{3}-\frac{1}{3}\right)-\left(\frac{1}{4}-\frac{1}{4}\right)-...-\left(\frac{1}{99}-\frac{1}{99}\right)-\frac{1}{100}\)

   \(=1-\frac{1}{100}=\frac{99}{100}\)

3 tháng 8 2018

Còn câu b niwax nha các bn . Giúp mk với

19 tháng 7 2020

M=\(\frac{4}{1.5}-\frac{4}{5.9}-\frac{4}{9.13}-...-\frac{4}{\left(n-4\right).n}\)

\(M=1-\frac{1}{5}-\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+...+\frac{1}{n-4}-\frac{1}{n}\right)\)

\(M=1-\frac{1}{5}-\frac{1}{5}+\frac{1}{n}\)

\(M=\frac{3}{5}+\frac{1}{n}\)

Mình chỉ giải đến đây thôi vì chẳng biết n bằng mấy cả

19 tháng 7 2020

= - (1-1/5 +1/5 -1/9 +1/9 -1/13 +1/n + 1/n+4)

=-(1-1/n+4)

=-1+1/n+4

29 tháng 10 2015

Có dạng tổng quát như thế này nhé: 
\(\frac{k}{n\left(n+k\right)}=\frac{1}{n}-\frac{1}{k+n}\)

Trong trường hợp này là \(\frac{-4}{1.5}-\frac{4}{5.9}-...-\frac{4}{\left(n+4\right)n}=-\left(\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{n}-\frac{1}{n+4}\right)\)

Đáp án là: \(\frac{1}{n+4}-1\)

\(\text{Đề bài sai : }\frac{4}{\left(n-4\right)^n}->\frac{4}{\left(n-4\right)^n}\)

\(\text{Ta có :}\)

                                               \(S=\frac{4}{1.5}-\frac{4}{5.9}-\frac{4}{9.13}-...-\frac{4}{\left(n-4\right)n}\)

                                                  \(=\left(\frac{1}{1}-\frac{1}{5}\right)-\left(\frac{1}{5}-\frac{1}{9}\right)-...-\left(\frac{1}{n-4}-\frac{1}{n}\right)\)

                                                  \(=\frac{1}{1}-\frac{1}{5}-\frac{1}{5}+\frac{1}{9}-...-\frac{1}{n-4}+\frac{1}{n}\)

                                                  \(=\frac{1}{1}-\frac{1}{5}-\frac{1}{5}+\frac{1}{n}\)

                                                  \(=\frac{3}{5}+\frac{1}{n}\)

                                                  \(=\frac{3}{5}+\frac{1}{n}\)

                                                  \(=\frac{3n+5}{5n}\)

\(\text{Vậy ...}\)

25 tháng 12 2018

M = - ( 4/1.5 + 4/5.9 + ..................+ 4/(n-4).n

M = - (1-1/5 + 1/5 - 1/9 +..............+1/(n-4) - 1/n

M = -(1-1/n)

M = -1 + 1/n 

M = -n + 1

27 tháng 12 2018

xie xie bn nha

4 tháng 3 2017

Ta có : \(-\frac{4}{1.5}-\frac{4}{5.9}-\frac{4}{9.13}-.....-\frac{4}{\left(n+4\right)n}\)

\(=-\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+......+\frac{4}{n\left(4+n\right)}\right)\)

\(=-\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+......+\frac{1}{n}-\frac{1}{n+4}\right)\)

\(=-\left(1-\frac{1}{n+4}\right)\)

\(=-\left(\frac{n+4}{n+4}-\frac{1}{n+4}\right)\)

\(=-\frac{n+3}{n+4}\)

21 tháng 9 2015

\(S=\frac{-4}{1.5}-\frac{4}{5.9}-\frac{4}{9.13}-...-\frac{4}{\left(n-4\right).n}\)

\(=-\left(\frac{1}{1}-\frac{1}{5}\right)-\left(\frac{1}{5}-\frac{1}{9}\right)-\left(\frac{1}{9}-\frac{1}{13}\right)-...-\left(\frac{1}{n-4}-\frac{1}{n}\right)\)

\(=-\frac{1}{1}+\frac{1}{5}-\frac{1}{5}+\frac{1}{9}-\frac{1}{9}+\frac{1}{13}-...-\frac{1}{n-4}+\frac{1}{n}\)

\(=-\frac{1}{1}+\frac{1}{n}=\frac{1}{n}+1\)