Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(S=1+3^2+3^4+...+3^{2020}\)
\(=1+\left(3^2+3^4\right)+\left(3^6+3^8\right)+...+\left(3^{2018}+3^{2020}\right)\)
\(=1+3^2\left(1+3^2\right)+3^6\left(1+3^2\right)+...+3^{2018}\left(1+3^2\right)\)
\(=1+10\left(3^2+3^6+...+3^{2018}\right)\)
Suy ra \(S\)có chữ số tận cùng là chữ số \(1\).
Bài 2:
\(A=2+2^2+2^3+...+2^{2016}\)
\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2014}+2^{2015}+2^{2016}\right)\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2014}\left(1+2+2^2\right)\)
\(=7\left(2+2^4+...+2^{2014}\right)⋮7\)
S = 30+32+34+...+32008
9S = 32+34+36+...+32010
9S - S = (32+34+36+...+32010) - (30+32+34+...+32008)
8S = 32010 - 30
8S = 32010 - 1
S = (32010 - 1) : 8
\(=\left(3^{2008}.3^2-1\right):8\)
\(=\left[\left(3^4\right)^{502}.9-1\right]:8\)
\(=\left[\overline{\left(...1\right)}^{502}.9-1\right]:8\)
\(=\left[\overline{\left(...1\right)}.9-1\right]:8\)
\(=\left[\overline{\left(...9\right)}-1\right]:8\)
\(=\overline{\left(...8\right)}:8\)
\(=\overline{...1}\)
Vậy S có c/s tận cùng là 1
Tính tổng S
\(S=3^0+3^1+...+3^{2007}+3^{2008}=\frac{3^{2009}-1}{2}\)(1)
(1)cái này bạn chưa hiểu mình Hướng giải chi tiết Bài tính Tổng dãy số
\(3^{2009}=3.9^{2008}=3.9^{2.1004}=3.81^{1004}\Rightarrow\)Tận cùng là 3
\(\Rightarrow3^{2009}-1\)có tận cùng =2
\(\frac{3^{2009}-1}{2}\) tận cùng là 1 hoặc 6
S không chia hết cho 2=> S tận cùng là 1
-------------Cách khác -----ghép số hạng
Để ý có 3^2+3^0=9+1=10
=> ghép cắp từ lớn xuống
3^2008+3^2006=3^2006(3^2+1)=10.3^2006
3^2007+3^2005=3^2005(3^2+1)=10+3^2006
Cuối cùng còn con 3^0 lẻ
3^0=1=>S có tận cùng 1
\(2^{x-3}=128\Leftrightarrow2^{x-3}=2^7\Rightarrow x-3=7\Leftrightarrow x=10\)
\(\left(x+6\right)^4=4096\Leftrightarrow\left(x+6\right)^4=2^{12}=\left(2^3\right)^4=8^4\Rightarrow x+6=8\Leftrightarrow x=2\)
\(2^{2018}=\left(2^4\right)^{504}.2^2==16^{504}.4< 16^{900}\\ \)
\(17^{20}>16^{20}=\left(4^2\right)^{20}=4^{40}\)
\(3^{444}=\left(3^4\right)^{111}=81^{111}>64^{111}=\left(4^3\right)^{111}=4^{333}\\ \)
2x-1 + 4 . 2x = 288
=> 2x = 288 : 4
2x = 72
2x = 26
x = 6
x3 = 1252
x3 = 15625
x3 = 253
x = 25
1020 < a < 1021
100000000000000000000 < a < 1000000000000000000000
Vì 1020 có 21 chữ số, 1021 có 22 chữ số nên a có 21 chữ số
Ta có : A = 30 + 31 + 32 + 33 + .... + 350
=> 3A = 31 + 32 + 33 + 34 + ... + 351
Khi đó 3A - A = (31 + 32 + 33 + 34 + ... + 351) - (30 + 31 + 32 + 33 + .... + 350)
=> 2A = 351 - 30
=> A = \(\frac{3^{51}-1}{2}\)
Khi đó A = \(\frac{3^{51}-1}{2}=\frac{3^3.3^{48}-1}{2}=\frac{27.\left(3^4\right)^{12}-1}{2}=\frac{27.\left(...1\right)^{12}-1}{2}\)
\(=\frac{\left(...7\right)-1}{2}=\frac{\left(...6\right)}{2}=\left(...3\right)\)
Vậy A tận cùng là 3
A=\(2.2^2.2^3....2^{10}=2^{1+2+3+4+5+6+7+8+9+10}=2^{55}\)
0 có chữ số 0 nào ở tận cùng vì có 0 ở tận cùng phải chia hết cho cả 2 và 5 nhưng 255 không chia hết cho 5