Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}+\frac{1}{195}\)
\(=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{13\cdot15}\)
\(=\frac{1}{2}\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{13\cdot15}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{15}\right)\)
\(=\frac{1}{2}\cdot\frac{14}{15}\)
\(=\frac{7}{15}\)
Sửa đề chút nhé:
\(\left(1+3+5+7+...+2009+2011\right).\left(125125.127-127127.125\right)\)
\(=\left(1+3+5+7+...+2009+2011\right).\left(125.1001.127-127.1001.125\right)\)
\(=\left(1+3+5+7+...+2009+2011\right).0\)
\(=0\)
Ý b tham khảo bài bạn nguyen thi thuy linh nhé
Đặt \(A=\frac{2^{19}\cdot27^3+15\cdot4^9\cdot9^4}{6^9\cdot2^{10}+12^{10}}\)
\(A=\frac{2^{19}\cdot\left(3^3\right)^3+15\cdot\left(2^2\right)^9\cdot\left(3^2\right)^4}{6^9\cdot2^9\cdot2+12^{10}}\)
\(A=\frac{2^{19}\cdot3^9+15\cdot2^{18}\cdot3^8}{12^9\cdot2+12^9\cdot12}=\frac{\left(2^{18}\cdot3^8\right)\cdot6+\left(2^{18}\cdot3^8\right)\cdot15}{12^9\cdot\left(2+12\right)}\)
\(A=\frac{\left(2^{18}\cdot3^8\right)\cdot\left(6+15\right)}{12^9\cdot14}=\frac{2^{18}\cdot3^8\cdot21}{12^9\cdot14}=\frac{2^{18}\cdot3^8\cdot7\cdot3}{2^{18}\cdot3^9\cdot7\cdot2}=\frac{3^8\cdot3}{3^8\cdot3\cdot2}\)
\(A=\frac{1}{2}\)
Đặt \(B=\frac{4}{35}+\frac{4}{63}+\frac{4}{99}+\frac{4}{143}+\frac{4}{195}=\frac{4}{5\cdot7}+\frac{4}{7\cdot9}+\frac{4}{9\cdot11}+\frac{4}{11\cdot13}+\frac{4}{13\cdot15}\)
\(B=\frac{1}{2}\left(\frac{4}{5}-\frac{4}{7}+\frac{4}{7}-\frac{4}{9}+...+\frac{4}{13}-\frac{4}{15}\right)\)
\(B=\frac{1}{2}\left(\frac{4}{5}-\frac{4}{15}\right)\)mà \(\frac{4}{5}-\frac{4}{15}< 1\Leftrightarrow\frac{1}{2}\left(\frac{4}{5}-\frac{4}{15}\right)< \frac{1}{2}\Leftrightarrow B< A\)
2S=\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}\)
= \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{13}-\frac{1}{15}\)
=\(1-\frac{1}{15}=\frac{14}{15}\)
\(\Rightarrow S=\frac{7}{15}\)
a. Ta có:A= 1/1.3+1/3.5+1/5.7+1/7.9+1/9.11+1/11.13+1/13.15
A=1/2(1/1.3+1/3.5+1/5.7+1/7.9+1/9.11+1/11.13+1/13.15)
A=1/2(1/1-1/3+1/3-1/5+1/5-1/7+1/7-1/9+1/9-1/11+1/11-1/13+1/13-1/15)
A=2(1-1/15)
A=1/2.14/15
A=7/15