\(1^3+2^3+3^3+...+100^3\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2015

Số hạng tổng quát trong tổng n

Nhận xét: n- n = n(n- 1) = (n - 1).n.(n + 1) => n=  (n - 1).n.(n + 1)  + n. Áp dụng ta có: 

1= 0 + 1

23 = 1.2.3 + 2

3= 2.3.4 + 3

....

100= 99.100.101 + 100

=> A = (1 + 2+3+...+100) + (1.2.3 + 2.3.4 + ...+ 99.100.101)

Tính B = 1.2.3 + 2.3.4 + ...+ 99.100.101

4.B = 1.2.3.4 + 2.3.4.(5 - 1) + ...+ 99.100.101.(102 - 98)

4.B = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + ...+ 99.100.101.102 - 98.99.100.101 = 99.100.101.102

=> 4.B - B = 99.100.101.102 => B = 99.100.101.102 : 3

Tính  C = 1 + 2+3 + ...+ 100 = (1+100).100 : 2 = ...

Vậy A = C + B = ..

5 tháng 1 2017

ta xet :

1^3=0+1

2^3=1*2*3+2

3^3=2*3*4+3

....................

100^3=99*100*101+100

=>A=(1*2*3+2*3*4+....+99*100*101)+(1+2+3+..+100)

=>A=A1+A2

ta co 

A1=1*2*3+2*3*4+....+99*100*101

4A1=1*2*3*4+2*3*4*(5-1)+...+99*100*101*(102-98)

4A1=1*2*3*4+2*3*4*5-1*2*3*4+....+99*100*101*102-98*99*100*101

4A1=(99*100*100)/4

A1=249975

ta co 

A2=1+2+3+4+....+100

A2=(100+1)*100/2

A2=5050

=>A=A1+A2

=>A=249975+5050=255025

Vay A=255025

6 tháng 9 2019

\(A=1+3+3^2+...+3^{100}\)

\(\Rightarrow3A=3+3^2+3^3+...+3^{101}\)

\(\Rightarrow3A-A=3^{101}-1\)

\(\Rightarrow A=\frac{3^{101}-1}{2}\)

17 tháng 2 2018

1) \(+2x+3y⋮17\)

\(\Rightarrow26x+39y⋮17\)

\(\Rightarrow\left(9x+5y\right)+17x+34y⋮17\)

Mà \(17x+34y⋮17\)

\(\Rightarrow9x+5y⋮17\)

\(+9x+5y⋮17\)

\(\Rightarrow36x+20y⋮17\)

\(\Rightarrow\left(2x+3y\right)+34x+17y⋮17\)

Mà \(34x+17y⋮17\)

\(\Rightarrow2x+3y⋮17\)

19 tháng 7 2018

\(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{100}\left(1+2+...+100\right)\)

\(=1+\frac{1}{2}\cdot\frac{2.3}{2}+\frac{1}{3}\cdot\frac{3.4}{2}+...+\frac{1}{100}\cdot\frac{100.101}{2}\)

\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+...+\frac{101}{2}\)

\(=\frac{1}{2}\left(2+3+...+101\right)=\frac{1}{2}\cdot\frac{100.103}{2}=25.103=2575\)

6 tháng 7 2019

A=1+\(\frac{1}{2}\cdot\frac{2\cdot3}{2}+\frac{1}{3}\cdot\frac{3\cdot4}{2}+\frac{1}{4}\cdot\frac{4\cdot5}{2}+....+\frac{1}{100}+\frac{100\cdot101}{2}\)

\(=1+\frac{3}{2}+\frac{4}{2}+...+\frac{101}{2}\)

\(=1+\left(\frac{101\cdot2}{2}-3\right)\cdot\frac{1}{2}=1+98\cdot\frac{1}{2}=49+1=50\)

26 tháng 9 2019

\(3+\frac{3}{1+2}+\frac{3}{1+2+3}+...+\frac{3}{1+2+3+...+100}\)

\(=3+3.\left(\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+100}\right)\)

\(=3+3.\left(\frac{1}{3}+\frac{1}{6}+...+\frac{1}{5050}\right)\)

\(=3+3.\frac{1}{2}.\left(\frac{1}{6}+\frac{1}{12}+...+\frac{1}{10100}\right)\)

\(=3+\frac{3}{2}.\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\right)\)

\(=3+\frac{3}{2}.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\right)\)

\(=3+\frac{3}{2}.\left(\frac{1}{2}-\frac{1}{101}\right)\)

\(=3+\frac{3}{2}.\frac{99}{202}\)

\(=3+\frac{297}{404}\)

\(=\frac{1509}{404}\)

26 tháng 9 2019

chỗ 3+3/2(1/6+..)

bn nhìn nhầm rồi

đáng lẽ: 3+(1/6+,.....) chứ nâk

25 tháng 7 2017

Ta có :

\(A=\frac{1}{3}+\frac{2}{3^2}+......+\frac{100}{3^{100}}\) \(\Rightarrow3A=1+\frac{2}{3}+\frac{3}{3^2}+.....+\frac{100}{3^{99}}\)

\(\Rightarrow3A-A=1+\frac{1}{3}+\frac{1}{3^2}+.....+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)= 2A

Đặt \(B=1+\frac{1}{3}+...+\frac{1}{3^{99}}\) \(\Rightarrow3B=3+1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{98}}\)

\(\Rightarrow3B-B=3-\frac{1}{3^{99}}=2B\) \(\Rightarrow B=\frac{3}{2}-\frac{1}{3^{99}.2}\)

\(\Rightarrow2A=\frac{3}{2}-\frac{1}{3^{99}.2}-\frac{100}{3^{100}}\)\(\Rightarrow A=\frac{3}{4}-\frac{1}{3^{99}.4}-\frac{100}{3^{100}}< \frac{3}{4}\Rightarrow\left(đpcm\right)\)

Ta có :

\(C=1+3+3^2+....+3^{100}\) \(\Rightarrow C-1=3+3^2+....+3^{100}\)

\(\Rightarrow3\left(C-1\right)=3^2+3^3+.....+3^{101}\)\(\Rightarrow3C-3-\left(C-1\right)=3^{101}-3\)

\(\Rightarrow2C-2=3^{101}-3\Rightarrow2C=3^{101}-1\)\(\Rightarrow C=\frac{3^{101}-1}{2}\)

Ta có :

\(D=2^{100}-2^{99}+2^{98}-.....-2\) \(\Rightarrow2D=2^{101}-2^{100}+2^{99}-.....-2^2\)

\(\Rightarrow2D+D=2^{101}-2=3D\) \(\Rightarrow D=\frac{2^{101}-2}{3}\)

25 tháng 7 2017

\(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)

\(3A=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)

\(2A=1+\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)-\frac{100}{3^{100}}\)

Ta thấy biểu thức trong dấu ngoặc nhỏ hơn 1/2 ( tự chứng minh ) nên 2A < 1 + 1/2 

\(\Rightarrow A< \frac{3}{4}\)

25 tháng 7 2017

\(C=1+3+3^2+3^3+...+3^{100}\)

\(3C=3+3^2+3^3+3^4+...+3^{101}\)

\(3C-C=\left(3+3^2+3^3+3^4+...+3^{101}\right)-\left(1+3+3^2+3^3+...+3^{100}\right)\)

\(2C=3^{101}-1\)

\(C=\frac{3^{101}-1}{2}\)

20 tháng 6 2016

undefined

20 tháng 6 2016

a) Câu hỏi của Nguyễn Khánh Ly - Toán lớp 7 - Học toán với OnlineMath

b) 2n - 3 = 2n + 2 - 5 chia hết cho n + 1

<=> 5 chia hết cho n + 1

<=> n + 1 thuộc Ư(5) = {1;5}

<=> n thuộc {0;4}

24 tháng 12 2017

ta có 3A=\(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)

\(\Rightarrow3A-A=\left(1+\frac{1}{3}+...+\frac{1}{3^{99}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\right)\)

\(\Rightarrow2A=1-\frac{1}{3^{100}}\Rightarrow A=\frac{1-\frac{1}{3^{100}}}{2}\)