K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2020

\(x-\frac{20}{11\cdot13}-\frac{20}{13\cdot15}-\frac{20}{15\cdot17}-......-\frac{20}{53\cdot55}=\frac{3}{11}\)

\(\Leftrightarrow x-10\left(\frac{2}{11\cdot13}-\frac{2}{13\cdot15}-\frac{2}{15\cdot17}-.....-\frac{2}{53\cdot55}\right)=\frac{3}{11}\)

\(\Leftrightarrow x-10\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+....+\frac{1}{53}-\frac{1}{55}\right)=\frac{3}{11}\)

\(\Leftrightarrow x-10\left(\frac{1}{11}-\frac{1}{55}\right)=\frac{3}{11}\)

\(\Rightarrow x=1\)

29 tháng 7 2018

\(x-\frac{20}{11.13}-\frac{20}{13.15}-\frac{20}{15.17}-...-\frac{20}{53.55}=\frac{3}{11}\)

\(\Rightarrow x-\left(\frac{20}{11.13}+\frac{20}{13.15}+\frac{20}{15.17}+...+\frac{20}{53.55}\right)=\frac{3}{11}\)

\(\Rightarrow x-\left[10\left(\frac{2}{11.13}+\frac{2}{13.15}+\frac{2}{15.17}+...+\frac{20}{53.55}\right)\right]=\frac{3}{11}\)

\(\Rightarrow x-\left[10\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+\frac{1}{15}-\frac{1}{17}+...+\frac{1}{53}-\frac{1}{55}\right)\right]=\frac{3}{11}\)

\(\Rightarrow x-\left[10\left(\frac{1}{11}-\frac{1}{55}\right)\right]=\frac{3}{11}\)

\(\Rightarrow x-\left[10.\frac{4}{55}\right]=\frac{3}{11}\)

\(\Rightarrow x-\frac{8}{11}=\frac{3}{11}\)

\(\Rightarrow x=\frac{3}{11}+\frac{8}{11}\)

\(\Rightarrow x=1\)

Vậy x = 1

_Chúc bạn học tốt_

18 tháng 8 2018

\(x-\left(\frac{20}{11.13}+\frac{20}{13.15}+....+\frac{20}{53.55}\right)=\frac{3}{11}\)

\(x-10\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+...+\frac{1}{53}-\frac{1}{55}\right)=\frac{3}{11}\)

\(x-10\left(\frac{1}{11}-\frac{1}{55}\right)=\frac{3}{11}\)

\(x-10.\frac{4}{55}=\frac{3}{11}\)

\(x-\frac{8}{11}=\frac{3}{11}\Rightarrow x=\frac{3}{11}+\frac{8}{11}=\frac{11}{11}=1\)

18 tháng 8 2018

\(x-\left(\frac{20}{11\cdot13}+\frac{20}{13\cdot15}+...+\frac{20}{53\cdot55}\right)=\frac{3}{11}\)

Đặt \(x-A=\frac{3}{11}\)

\(\frac{A}{10}=\frac{2}{11\cdot13}+\frac{2}{13\cdot15}+...+\frac{2}{53\cdot55}\)

\(\frac{A}{10}=\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+...+\frac{1}{53}-\frac{1}{55}\)

\(\frac{A}{10}=\frac{1}{11}-\frac{1}{55}\)

\(\frac{A}{10}=\frac{4}{55}\)

\(A=\frac{8}{11}\)

\(\Rightarrow x-\frac{8}{11}=\frac{3}{11}\)

\(\Rightarrow x=\frac{3}{11}+\frac{8}{11}\)

\(\Rightarrow x=1\)

18 tháng 7 2017

a, Theo bài ra ta có:

\(M=\dfrac{2007}{1}+1+\dfrac{2006}{2}+1+.......+\dfrac{2}{2006}+1+\dfrac{1}{2007}+1-2007\)

( Ta thêm 1 vào mỗi một số hạng trong M nên phải bớt đi 2017 vì có 2017 số hạng ) ;'

\(=>M=2008+\dfrac{2008}{2}+\dfrac{2008}{3}+......+\dfrac{2008}{2007}+\dfrac{2008}{2007}-2007\)

\(=>M=\dfrac{2008}{2}+\dfrac{2008}{3}+\dfrac{2008}{4}+.....+\dfrac{2008}{2006}+\dfrac{2008}{2007}+1\)

Ta thấy xuất hiện 2008 chung nên đặt ra ngoài ta có:

\(=>M=2008\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+....+\dfrac{1}{2006}+\dfrac{1}{2007}+\dfrac{1}{2008}\right)\)

\(=>M:N=2008\)

Câu b đợi 1 chút nha.......

18 tháng 7 2017

b, \(M=\dfrac{1}{11.13}+\dfrac{1}{13.15}+...+\dfrac{1}{31.33}\)

\(=\dfrac{1}{2}\left(\dfrac{2}{11.13}+\dfrac{2}{13.15}+...+\dfrac{2}{31.33}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{11}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{15}+...+\dfrac{1}{31}-\dfrac{1}{33}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{11}-\dfrac{1}{33}\right)\)

\(=\dfrac{1}{33}\)

\(N=\dfrac{12}{11.13.15}+\dfrac{12}{13.15.17}+...+\dfrac{12}{31.33.35}\)

\(=3\left(\dfrac{4}{11.13.15}+\dfrac{4}{13.15.17}+...+\dfrac{4}{31.33.35}\right)\)

\(=3\left(\dfrac{1}{11.13}-\dfrac{1}{13.15}+\dfrac{1}{13.15}-\dfrac{1}{15.17}+...+\dfrac{1}{31.33}-\dfrac{1}{33.35}\right)\)

\(=3\left(\dfrac{1}{11.13}-\dfrac{1}{33.35}\right)\)

\(=\dfrac{92}{5005}\)

\(\Rightarrow M:N=\dfrac{1}{33}:\dfrac{92}{5005}=\dfrac{455}{276}\)

Vậy...

7 tháng 10 2019

A=1.3+2.4+3.5+..........+99.101

A=(2-1).(2+1)+(3-1).(3+1)+......+(100-1).(100+1)

A=2^2-1+3^2-1+..........+100^2-1

A=(2^2+3^2+4^2+..........+100^2)-(1+1+........+1)

A=(2^2+3^2+4^2+..........+100^2)-99

 Còn  lại bạn  tự làm nha

7 tháng 10 2019

thanks Ngô Cao Hoàng nha!

1 tháng 9 2015

A=1.3+2.4+3.5+…+99.101

=>A=(2-1).(2+1)+(3-1).(3+1)+(4-1).(4+1)+…+(100-1).(100+1)

=>A=22-1+32-1+42-1+…+1002-1

=>A=(22+32+42+…+1002)-(1+1+1+…+1)

=>A=(22+32+42+…+1002)-99

1 tháng 9 2015

A=1.3+2.4+3.5+....+99.101

A=1.(2+1)+2.(3+1)+.....+99.(100+1)

A=1.2+1+2.3+2+3.4+3+....+99.100+99

A=1.2+2.3+3.4+...+99.100+(1+2+3+4+....+99)

Đặt B=1.2+2.3+.....+99.100

=>3B=1.2.3+2.3.(4-1)+.....+99.100.(101-98)

=>3B=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+......+99.100.101-98.99.100

=>3B=99.100.101

=>B=33.100.101=333300

Đặt C=1+2+3+4..+99

=>C=(1+99).99:2=4950

=>A=333300+4950=338250