Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x-\frac{20}{11\cdot13}-\frac{20}{13\cdot15}-\frac{20}{15\cdot17}-......-\frac{20}{53\cdot55}=\frac{3}{11}\)
\(\Leftrightarrow x-10\left(\frac{2}{11\cdot13}-\frac{2}{13\cdot15}-\frac{2}{15\cdot17}-.....-\frac{2}{53\cdot55}\right)=\frac{3}{11}\)
\(\Leftrightarrow x-10\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+....+\frac{1}{53}-\frac{1}{55}\right)=\frac{3}{11}\)
\(\Leftrightarrow x-10\left(\frac{1}{11}-\frac{1}{55}\right)=\frac{3}{11}\)
\(\Rightarrow x=1\)
\(x-\frac{20}{11.13}-\frac{20}{13.15}-\frac{20}{15.17}-...-\frac{20}{53.55}=\frac{3}{11}\)
\(\Rightarrow x-\left(\frac{20}{11.13}+\frac{20}{13.15}+\frac{20}{15.17}+...+\frac{20}{53.55}\right)=\frac{3}{11}\)
\(\Rightarrow x-\left[10\left(\frac{2}{11.13}+\frac{2}{13.15}+\frac{2}{15.17}+...+\frac{20}{53.55}\right)\right]=\frac{3}{11}\)
\(\Rightarrow x-\left[10\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+\frac{1}{15}-\frac{1}{17}+...+\frac{1}{53}-\frac{1}{55}\right)\right]=\frac{3}{11}\)
\(\Rightarrow x-\left[10\left(\frac{1}{11}-\frac{1}{55}\right)\right]=\frac{3}{11}\)
\(\Rightarrow x-\left[10.\frac{4}{55}\right]=\frac{3}{11}\)
\(\Rightarrow x-\frac{8}{11}=\frac{3}{11}\)
\(\Rightarrow x=\frac{3}{11}+\frac{8}{11}\)
\(\Rightarrow x=1\)
Vậy x = 1
_Chúc bạn học tốt_
\(x-\left(\frac{20}{11.13}+\frac{20}{13.15}+....+\frac{20}{53.55}\right)=\frac{3}{11}\)
\(x-10\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+...+\frac{1}{53}-\frac{1}{55}\right)=\frac{3}{11}\)
\(x-10\left(\frac{1}{11}-\frac{1}{55}\right)=\frac{3}{11}\)
\(x-10.\frac{4}{55}=\frac{3}{11}\)
\(x-\frac{8}{11}=\frac{3}{11}\Rightarrow x=\frac{3}{11}+\frac{8}{11}=\frac{11}{11}=1\)
\(x-\left(\frac{20}{11\cdot13}+\frac{20}{13\cdot15}+...+\frac{20}{53\cdot55}\right)=\frac{3}{11}\)
Đặt \(x-A=\frac{3}{11}\)
\(\frac{A}{10}=\frac{2}{11\cdot13}+\frac{2}{13\cdot15}+...+\frac{2}{53\cdot55}\)
\(\frac{A}{10}=\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+...+\frac{1}{53}-\frac{1}{55}\)
\(\frac{A}{10}=\frac{1}{11}-\frac{1}{55}\)
\(\frac{A}{10}=\frac{4}{55}\)
\(A=\frac{8}{11}\)
\(\Rightarrow x-\frac{8}{11}=\frac{3}{11}\)
\(\Rightarrow x=\frac{3}{11}+\frac{8}{11}\)
\(\Rightarrow x=1\)
a, Theo bài ra ta có:
\(M=\dfrac{2007}{1}+1+\dfrac{2006}{2}+1+.......+\dfrac{2}{2006}+1+\dfrac{1}{2007}+1-2007\)
( Ta thêm 1 vào mỗi một số hạng trong M nên phải bớt đi 2017 vì có 2017 số hạng ) ;'
\(=>M=2008+\dfrac{2008}{2}+\dfrac{2008}{3}+......+\dfrac{2008}{2007}+\dfrac{2008}{2007}-2007\)
\(=>M=\dfrac{2008}{2}+\dfrac{2008}{3}+\dfrac{2008}{4}+.....+\dfrac{2008}{2006}+\dfrac{2008}{2007}+1\)
Ta thấy xuất hiện 2008 chung nên đặt ra ngoài ta có:
\(=>M=2008\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+....+\dfrac{1}{2006}+\dfrac{1}{2007}+\dfrac{1}{2008}\right)\)
\(=>M:N=2008\)
Câu b đợi 1 chút nha.......
b, \(M=\dfrac{1}{11.13}+\dfrac{1}{13.15}+...+\dfrac{1}{31.33}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{11.13}+\dfrac{2}{13.15}+...+\dfrac{2}{31.33}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{11}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{15}+...+\dfrac{1}{31}-\dfrac{1}{33}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{11}-\dfrac{1}{33}\right)\)
\(=\dfrac{1}{33}\)
\(N=\dfrac{12}{11.13.15}+\dfrac{12}{13.15.17}+...+\dfrac{12}{31.33.35}\)
\(=3\left(\dfrac{4}{11.13.15}+\dfrac{4}{13.15.17}+...+\dfrac{4}{31.33.35}\right)\)
\(=3\left(\dfrac{1}{11.13}-\dfrac{1}{13.15}+\dfrac{1}{13.15}-\dfrac{1}{15.17}+...+\dfrac{1}{31.33}-\dfrac{1}{33.35}\right)\)
\(=3\left(\dfrac{1}{11.13}-\dfrac{1}{33.35}\right)\)
\(=\dfrac{92}{5005}\)
\(\Rightarrow M:N=\dfrac{1}{33}:\dfrac{92}{5005}=\dfrac{455}{276}\)
Vậy...
A=1.3+2.4+3.5+..........+99.101
A=(2-1).(2+1)+(3-1).(3+1)+......+(100-1).(100+1)
A=2^2-1+3^2-1+..........+100^2-1
A=(2^2+3^2+4^2+..........+100^2)-(1+1+........+1)
A=(2^2+3^2+4^2+..........+100^2)-99
Còn lại bạn tự làm nha
A=1.3+2.4+3.5+…+99.101
=>A=(2-1).(2+1)+(3-1).(3+1)+(4-1).(4+1)+…+(100-1).(100+1)
=>A=22-1+32-1+42-1+…+1002-1
=>A=(22+32+42+…+1002)-(1+1+1+…+1)
=>A=(22+32+42+…+1002)-99
A=1.3+2.4+3.5+....+99.101
A=1.(2+1)+2.(3+1)+.....+99.(100+1)
A=1.2+1+2.3+2+3.4+3+....+99.100+99
A=1.2+2.3+3.4+...+99.100+(1+2+3+4+....+99)
Đặt B=1.2+2.3+.....+99.100
=>3B=1.2.3+2.3.(4-1)+.....+99.100.(101-98)
=>3B=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+......+99.100.101-98.99.100
=>3B=99.100.101
=>B=33.100.101=333300
Đặt C=1+2+3+4..+99
=>C=(1+99).99:2=4950
=>A=333300+4950=338250