Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\frac{1}{2}\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\frac{1}{2}\left(\frac{1}{98.99}-\frac{1}{99.100}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{9900}\right)\)
\(=\frac{1}{2}.\frac{4949}{9900}\)
\(=\frac{4949}{19800}\)
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\frac{1}{2}\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\frac{1}{2}\left(\frac{1}{98.99}-\frac{1}{99.100}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)
\(=\frac{1}{2}.\frac{4949}{9900}=\frac{4949}{19800}\)
Đặt S=1.2.3+2.3.4+...+98.99.100
=>4S=1.2.3.4+2.3.4.4+...+98.99.100.4
=>3S=1.2.3(4-0)+2.3.4(5-1)+....+98.99.100(101-97)
=>4S=1.2.3.4-0.1.2.3+2.3.4.5-1.2.3.4+....+98.99.100.101-97.98.99.100
=>4S=98.99.100.101
=>S=24497550
Ta xét:
\(\frac{1}{1.2}-\frac{1}{2.3}=\frac{2}{1.2.3};\frac{1}{2.3}-\frac{1}{3.4}=\frac{2}{2.3.4};...;\frac{1}{98.99}-\frac{1}{99.100}=\frac{2}{98.99.100}\)
Qua công thức trên, bạn có thể rút ra tổng quát: (đây là mình nói thêm)
\(\frac{1}{n.\left(n+1\right)}-\frac{1}{\left(n+1\right).\left(n-2\right)}=\frac{2}{n.\left(n+1\right).\left(n+2\right)}\)
Ta suy ra:
\(2B=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\)
Thấy \(-\frac{1}{2.3}+\frac{1}{2.3}=0;-\frac{1}{3.4}+\frac{1}{3.4}=0;...\)
\(\Rightarrow2B=\frac{1}{2}-\frac{1}{99.100}=\frac{1}{2}-\frac{1}{9900}=\frac{4950}{9900}-\frac{1}{9900}=\frac{4949}{9900}\)
\(\Rightarrow B=\frac{4949}{9900}:2=\frac{4949}{19800}\)
Mình nhầm, công thức tổng quát mình nói thêm bạn đổi cái n-2 thành n+2 nha
Đặt A=1.2.3+2.3.4+3.4.5+4.5.6+...+98.99.100
4A=(1.2.3+2.3.4+3.4.5+4.5.6+...+98.99.100)4
4A=1.2.3(4-0)+2.3.4(5-1)+3.4.5(6-2)+4.5.6(7-3)+...+98.99.100(101-97)
4A=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+4.5.6.7-3.4.5.6+...+98.99.100.101-97.98.99.100
4A=1.2.3.4-1.2.3.4+2.3.4.5-2.3.4.5+3.4.5.6-3.4.5.6+...+97.98.99.100-97.98.99.100+98.99.100.101
4A=98.99.100.101
=>A=98.99.100.101/4
nhân tổng trên cho 2 ta có;
2/1.2.3+2/2.3.4+.........+2/98.99.100
=1/1.2-1/2.3+1/2.3-1/3.4+........+1/98.99-1/99.100
=1/1.2-1/99.100
=4949/9900
/
Đặt S = 1.2.3 + 2.3.4 + 3.4.5 + .... + 98.99.100
=> 4S = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + ... + 98.99.100.4
=> 4S = 1.2.3.4 + 2.3.4.( 5 - 1 ) + 3.4.5.( 6 - 2 ) + .... + 98.99.100.( 101 - 97 )
=> 4S = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + .... + 98.99.100.101 - 97.98.99.100
=> 4S = ( 1.2.3.4 - 1.2.3.4 ) + ( 2.3.4.5 - 2.3.4.5 ) + ...... + ( 97.98.99.100 - 97.98.99.100 ) + 98.99.100.101
=> 4S = 98.99.100.101
=> S = \(\frac{98.99.100.101}{4}\)
=> S = 24497550
549 + X = 1326
X = 1326 - 549
X = 777
X - 636 = 5618
X = 5618 + 636
X = 6254
A = 1.2.3 + 2.3.4 + …. + 98.99.100
4A = 4( 1.2.3 + 2.3.4 + …. + 98.99.100)
4A= 1.2.3.4 + 2.3.4.4 +....+98.99.100.4
4A= 1.2.3.4 + 2.3.4 (5-1) +....+98.99.100(101- 97)
4A= 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + ....+ 98.99.100.101 - 97.98.99.100
4A= 98.99.100.101
4A=97990200
A= 97990200:4
A=24497550
Vậy.....