Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1\cdot2+2\cdot3+3\cdot4+...+20\cdot21}{1+2-3-4+5+6-7-8+...+197+198-199-200+201}\) (1)
đặt \(B=1\cdot2+2\cdot3+3\cdot4+...+20\cdot21\)
\(3B=1\cdot2\cdot3+2\cdot3\cdot3+3\cdot4\cdot3+...+20\cdot21\cdot3\)
\(3B=1\cdot2\cdot\left(3-0\right)+2\cdot3\cdot\left(4-1\right)+3\cdot4\cdot\left(5-2\right)+...+20\cdot21\cdot\left(22-19\right)\)
\(3B=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+3\cdot4\cdot5-2\cdot3\cdot4+...+20\cdot21\cdot22-19\cdot20\cdot21\)
\(3B=20\cdot21\cdot22\)
\(B=\frac{20\cdot21\cdot22}{3}=3080\) (2)
đặt \(C=1+2-3-4+5+6-7-8+...+197+197-199-200+201\)
\(C=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(197+198-199-200\right)+201\)
\(C=-4+\left(-4\right)+...+\left(-4\right)+201\) có 50 số -4
\(C=-4\cdot50+201\)
\(C=-200+201\)
\(C=1\) (3)
\(\left(1\right)\left(2\right)\left(3\right)\Rightarrow A=\frac{B}{C}=\frac{30801}{1}=3080\)
3A = 1.2.(3-0) + 2.3.(4-1) + 3.4.(5-2) + ... + 99.100.(101-98)
3A = 1.2.3 - 0.1.2 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.99.100
3A = 99.100.101 - 0.1.2
3A = 99.100.101
A = 33.100.101
A = 333300
A=1.2+2.3+3.4+4.5+...+2014.2015
=>3A=1.2.3+2.3.3+3.4.3+4.5.3+...+2014.2015.3
=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+4.5.(6-3)+...+2014.2015.(2016-2013)
=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+...+2014.2015.2016-2013.2014.2015
=(1.2.3-1.2.3)+(2.3.4-2.3.4)+(3.4.5-3.4.5)+(4.5.6-4.5.6)+...+(2013.2014.2015-2013.2014.2015)+0.1.2+2014.2015.2016
=0+2014.2015.2016
=>A=\(\frac{2014.2015.2016}{3}\)
Bài giải:
3S = 1.2.3 + 2.3.3 + 3.4.3 + ... + n(n +1)3
= 1.2.(3 - 0) + 2.3.(4 - 1) + 3.4.(5 - 2) + ...+ n(n + 1)[(n + 2) - (n -1)]
= 1.2.3 + 2.3.4 - 2.3 + 3.4.5 - 2.3.4 + ... + n(n + 1)(n + 2) - n(n + 1)(n - 1)
= n(n + 1)(n + 2)
=> S N(N+1)(n+2)/3
3S = 1.2.3 + 2.3.3 + 3.4.3 + ... + n(n +1)3
= 1.2.(3 - 0) + 2.3.(4 - 1) + 3.4.(5 - 2) + ...+ n(n + 1)[(n + 2) - (n -1)]
= 1.2.3 + 2.3.4 - 2.3 + 3.4.5 - 2.3.4 + ... + n(n + 1)(n + 2) - n(n + 1)(n - 1)
= n(n + 1)(n + 2)
=> S = \(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
A=1-1/2+1/2-1/3+1/3-1/4+.........+1/99-1/100
A=1-1/100
A=99/100
ai k mk mk k lai
ĐẶT A LÀM BIỂU THỨC
=>A=1.2+2.3+3.4+.+99.100
=>3A=1.2.3+2.3.3+3.4.3+....+99.100.3
=>3A=1.2.3+2.3(4-1)+3.4(5-2) + .......+ 99.100(101-98)
=>A=1.2.3+2.3.4-1.2.3-3.4.5-2.3.4+.....+98.99.100-99.100.101
=>A3=99.100.101
=>A=99.100.101:3
=>A=333300
Đặt A = 1.2 + 2.3 + 3.4 + ...... + 199.200
=> 3A = 1.2.(3 - 0) + 2.3.(4 - 1) + ..... + 199.200.(201 - 98)
=> 3A = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + .... + 199.200.201
=> 3A = 199.200.201
=> A = 199.200.201 : 3
=> A = 2 666 600