K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A =1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128

A = 64/128 + 32/128 + 16/128 + 8/128 + 4/128 + 2/128 + 1/128 

A = 217/218 tick đúng nha

5 tháng 1 2016

\(A=\frac{1}{2}+\frac{1}{4}+...+\frac{1}{128}\)

\(\frac{1}{2}A=\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}\)

\(A-\frac{1}{2}A=\left(\frac{1}{4}-\frac{1}{4}\right)+...+\left(\frac{1}{128}-\frac{1}{128}\right)+\left(\frac{1}{2}-\frac{1}{256}\right)\)

\(A=\left(\frac{1}{2}-\frac{1}{256}\right)\times2=1-\frac{1}{128}=\frac{127}{128}\)

15 tháng 7 2018

Khó quá

10 tháng 8 2018

1/2 + 1/4 + 1/8 +1/16 + 1/32 + 1/64 + 1/128 

= 2 . ( 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 )

= 1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 - 1/128 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128  ( Rồi giản ước )

= 1

Sửa đề :

\(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\)

Bài làm :

\(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\)

\(=\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+...+\frac{1}{128}-\frac{1}{256}\)

\(=\frac{1}{4}-\frac{1}{256}=\frac{63}{256}\)

4 tháng 7 2016

\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)

\(\Rightarrow2A=\frac{2}{2}+\frac{2}{4}+\frac{2}{8}+\frac{2}{16}+\frac{2}{32}+\frac{2}{64}+\frac{2}{128}\)

\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)

\(\Rightarrow2A-A=\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\right)\)

\(\Rightarrow A=1-\frac{1}{128}=\frac{128}{128}-\frac{1}{128}=\frac{127}{128}\)

4 tháng 7 2016

\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+....+\frac{1}{128}\)

\(=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{8}\right)+.....+\left(\frac{1}{64}-\frac{1}{128}\right)\)

\(=1-\frac{1}{128}=\frac{127}{128}\)

27 tháng 1 2017

1/128+2/128+4/128+8/128+16/128+32/128+64/128=127/128

 k di

27 tháng 1 2017

óc chó

3 tháng 7 2018

a , tổng các phân số đã cho là : 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 = 79/64 

b, \(\frac{79}{64}\)và \(\frac{2017}{2018}\)=  \(\frac{159422}{129152}\)và \(\frac{129088}{129152}\)\(\frac{159422}{129152}\)\(\frac{129088}{129152}\)

=> \(\frac{79}{64}\)\(\frac{2017}{2018}\) 

3 tháng 7 2018

a) 1/2 + 1/4 + 1/8 + 1/ 16 + 1/32 + 1/64 

=32/64 + 16/64 + 8/64 + 4/64 + 2/64

=32+16+8+4+2/64 = 66/64= 33/32

b) ta có 33/32 > 1 và 2017/2018<1

nên 33/32 > 2017/2018

2 tháng 7 2019

Bài 1:

2 tháng 7 2019

Bài 1: 1/3+1/9+1/27+1/81+1/243+1/729

Đặt:
A = 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729
Nhân A với 3 ta có:
\(Ax3=3+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
\(\Rightarrow Ax3-S=3-\frac{1}{243}\)
\(\Rightarrow2A=\frac{2186}{729}\)
\(\Rightarrow A=\frac{2186}{729}:2\)
\(\Rightarrow A=\frac{1093}{729}\)

22 tháng 8 2018

\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+\frac{1}{16}-\frac{1}{32}+\frac{1}{32}-\frac{1}{64}\)

\(=1-\frac{1}{64}\)

\(=\frac{63}{64}\)

22 tháng 8 2018

      \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+\frac{1}{16}-\frac{1}{32}+\frac{1}{32}-\frac{1}{64}+\frac{1}{64}\)

\(=1-\frac{1}{64}\)

\(=\frac{63}{64}\)

23 tháng 7 2019

B)A*2=(1/2+1/4+....+1/256)*2

=1+1/2+1/4+....+1/128)

A*2-A=(1+1/2+1/4+...+1/128)-(1/2+1/4+...+1/256)

=1-1/256

=255/256

23 tháng 7 2019

a) Đặt A = \(\frac{5}{2}+\frac{5}{6}+\frac{5}{18}+\frac{5}{54}+\frac{5}{162}\)

  \(\Rightarrow\frac{1}{3}\times A=\frac{5}{6}+\frac{5}{18}+\frac{5}{54}+\frac{5}{162}+\frac{5}{486}\)

Lấy \(A-\frac{1}{3}\times A\)theo vế ta có : 

\(A-\frac{1}{3}\times A=\left(\frac{5}{2}+\frac{5}{6}+\frac{5}{18}+\frac{5}{54}+\frac{5}{162}\right)-\left(\frac{5}{6}+\frac{5}{18}+\frac{5}{54}+\frac{5}{162}+\frac{5}{486}\right)\)

\(\Rightarrow\frac{2}{3}\times A=\frac{5}{2}-\frac{5}{486}\)

\(\Rightarrow\frac{2}{3}\times A=\frac{605}{243}\)

  \(\Rightarrow A=\frac{605}{243}:\frac{2}{3}\)

  \(\Rightarrow A=\frac{605}{162}\)

Vậy  \(\frac{5}{2}+\frac{5}{6}+\frac{5}{18}+\frac{5}{54}+\frac{5}{162}=\frac{605}{162}\)

b) Đặt B = \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{128}+\frac{1}{256}\)

=> \(\frac{1}{2}\times B=\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+...+\frac{1}{256}+\frac{1}{512}\)

Lấy B trừ \(\frac{1}{2}\times B\)theo vế ta có : 

\(B-\frac{1}{2}\times B=\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...++\frac{1}{128}+\frac{1}{256}\right)-\left(\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+...+\frac{1}{512}\right)\)

\(\Rightarrow\frac{1}{2}\times B=\frac{1}{2}-\frac{1}{512}\)

\(\Rightarrow\frac{1}{2}\times B=\frac{255}{512}\)

\(\Rightarrow B=\frac{255}{512}:\frac{1}{2}\)

\(\Rightarrow B=\frac{255}{256}\)

Vậy \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+...+\frac{1}{256}=\frac{255}{256}\)

16 tháng 4 2020

đặt \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+...+\frac{1}{256}\)

=> A=\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+....+\frac{1}{2^8}\)

=> 2A=\(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+....+\frac{1}{2^7}\)

=> 2A-A=\(\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^7}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^8}\right)\)

=> A=\(1-\frac{1}{2^8}\)