Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\left[\dfrac{3xy\left(x-2x^2y\right)}{3xy}+6x^2y-x\right]^2:\dfrac{1}{2}x^2\)
\(=\left[x-2x^2y+6x^2y-x\right]^2:\dfrac{1}{2}x^2\)
\(=\dfrac{16x^4y^2}{0.5x^2}=32x^2y^2\)
b: \(=\dfrac{7\left(a-b\right)^5+5\left(a-b\right)^3}{\left(a-b\right)^2}=7\left(a-b\right)^3+5\left(a-b\right)\)
c: \(=\dfrac{7\left(a-3b\right)^3+\left(a-3b\right)}{2\left(a-3b\right)}=\dfrac{7\left(a-3b\right)^2+1}{2}\)
Cho a-3b=1, 2ab=-4. Tính:
A=2a+(7ab)/2-6b+2
B= (2a+6b)2-2
C+ 3a2+27b2-ab-1
D=a3-27b3+a2+9b2+2
E=a4+81b4-1
Cho a-3b=1, 2ab=-4. Tính:
A=2a+(7ab)/2-6b+2
B=(2a+6b)2-2
C= 3a2+27b2-ab-1
D= a3-27b3+a2+9b2+2
E=a4+81b4-1
Từ \(a^2-6b^2=-ab\Rightarrow a^2-6b^2+ab=0\)
\(\Rightarrow a^2+3ab-2ab-6b^2=0\)
\(\Rightarrow a\left(a+3b\right)-2b\left(a+3b\right)=0\)
\(\Rightarrow\left(a+3b\right)\left(a-2b\right)=0\)
\(\Rightarrow\orbr{\begin{cases}a+3b=0\\a-2b=0\end{cases}}\Rightarrow\orbr{\begin{cases}a=-3b\\a=2b\end{cases}}\)
- Xét \(a=-3b\) thay vào M ta có:
\(M=\frac{2\cdot3\left(-b\right)\cdot b}{2\left(-3b\right)^2-3b^2}=\frac{-6b^2}{15b^2}=-\frac{2}{5}\)
- Xét \(a=2b\) thay vào M ta có:
\(M=\frac{2\cdot2b\cdot b}{2\cdot\left(2b\right)^2-3b^2}=\frac{4b^2}{8b^2-3b^2}=\frac{4b^2}{5b^2}=\frac{4}{5}\)