Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: A = x3 + y3 + 3xy = (x + y)(x2 - xy + y2) + 3xy = 1. (x2 - xy + y2) + 3xy = x2 - xy + y2 + 3xy = x2 + 2xy + y2 = (x + y)2 = 12 = 1
b)Ta có: B = x3 - y3 - 3xy = (x - y)(x2 + xy + y2) - 3xy = 1. (x2 + xy + y2) - 3xy = x2 + xy + y2 - 3xy = x2 - 2xy + y2 = (x - y)2 = 12 = 1
d) Ta có : D = x3 + y3 + 3xy(x2 + y2) + 6x2y2(x + y)
=> D = (x + y)(x2 - xy + y2) + 3xy(x2 + 2xy + y2) - 6x2y2 + 6x2y2
=> D = x2 - xy + y2 + 3xy(x + y)2
=> D = x2 - xy + y2 + 3xy.12
=> D = x2 + 2xy + y2
=> D = (x + y)2 = 12 = 1
a, \(x^3+y^3+3xy=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy=x^2-xy+y^2+3xy=x^2+2xy+y^2=\left(x+y\right)^2=1\)
b, tương tự a
c, Sửa đề Cho a+b=1. Tính giá trị của các biểu thứ :A= a3+b3+3ab(a2+b2)+ 6a2b2(a+b)
\(A=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\left(a+b\right)\)
\(=\left(a+b\right)\left[\left(a+b\right)^2-3ab\right]+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\left(a+b\right)\)
Thay a+b=1 vào A ta có:
\(A=1-3ab+3ab\left(1-2ab\right)+6a^2b^2\)
\(=1-3ab+3ab-6a^2b^2+6a^2b^2=1\)
d. \(B=x^2+2xy+y^2-4x-4y+1=\left(x+y\right)^2-4\left(x+y\right)+1=\left(x+y\right)\left(x+y-4\right)+1\)
Thay x+y=3 vào B ta có:
\(B=3\left(3-4\right)+1=3.\left(-1\right)+1=-3+1=-2\)
\(x^3+y^3+3xy\left(x^2+y^2\right)+6x^2y^2\left(x+y\right)\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\left[\left(x^2+2xy+y^2\right)-2xy\right]+6x^2y^2\)
\(=1-3xy+3xy\left(x+y\right)^2-6x^2y^2+6x^2y^2\)
\(=1-3xy+3xy\)
\(=1\)
1)a)x+y=60
<=>(x+y)^2=3600
<=>x^2+2xy+y^2=3600(1)
mà xy=35 nên 2xy=2.35=70
(1)<=>x^2+70+y^2=3600
<=>x^2+y^2=3530
<=>(x^2+y^2)^2=12460900
<=>x^4+2x^2.y^2+y^4=12460900(2)
mà xy=35 nên 2x.x.y.y=2450
(2)<=>x^4+y^4=123458450
b)x+y=1
<=>(x+y)^3=1
<=>x^3+3x^2y+3xy^2+y^3=1
<=>x^3+y^3+3xy(x+y)=1
<=>x^3+y^3+3xy=1
=>M=1
x+y=1
<=>x^2+2xy+y^2=1(1)
B=x^3+y^3+3xy(x^2+y^2)+3xy(2xy)
=x^3+y^3+3xy(x^2+2xy+y^2)
=M.1=1(từ(1)
c)
x-y=1
<=>(x-y)^3=1
<=>x^3-3x^2y+3xy^2-y^3=1
<=>x^3-y^3-3xy(x-y)=1
<=>x^3-y^3-3xy=1
=>N=1
a. Có \(x+y=2\Rightarrow x^2+2xy+y^2=4\Rightarrow x^2+y^2=4-2.\left(-3\right)=10\)
\(x^4+y^4=\left(x^2\right)^2+\left(y^2\right)^2=\left(x^2+y^2\right)^2-2x^2y^2\)
\(=10^2-2.\left(-3\right)^2=82\)
b. Ta có \(x+y=1\Rightarrow x^2+y^2=1-2xy\)
\(x^3+y^3+3xy=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\)
\(=1.\left(1-2xy-xy\right)+3xy=1\)
Các câu còn lại tương tự
Các bài này đưa về dạng Hằng đẳng thức là được . Làm ra dài lắm bạn ạ !