K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2015

 

3(22+1).(24+1).(28+1)......(232+1)+2

=(22-1)(22+1).(24+1).(28+1)......(232+1)+2

=(24-1).(24+1).(28+1)......(232+1)+2

=(28-1).(28+1)......(232+1)+2

=....

=(232-1)(232+1)+2

=264-1+2

=264+1

11 tháng 7 2015

3 = 4 -1 = 22  -1 thay vào ta có :

  \(\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)....\left(2^{32}+1\right)+2=\left(2^4-1\right)\left(2^4+1\right)...\left(2^{32}+1\right)+2\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+2=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+2\)

\(=\left(2^{32}-1\right)\left(2^{32}+1\right)+2=2^{64}-1+2=2^{64}+1\)

17 tháng 9 2017

Giải:

1) B = 272 - 252 = (27 - 25)(27 + 25) = 20.52

Suy ra A<B, vì 202<20.52

2) D = 20032 - 1 = 20032 - 12 = (2003 - 1)(2003 + 1) = 2002.2004

Suy ra C = D.

3) Nhân (2-1) vào E, ta đươc: E = (2-1)(2+1)(22+1)(24+1)(28+1)(216+1)

Áp dụng lân lượt hằng đẳng thức số 3 (Hiệu hai bình phương) vào E, ta được kế quả:

E = 232-1

Suy ra E<F

4) Nhân (3-1) vào G, ta đươc: 2G = (3-1)(3+1)(32+1)(34+1)(38+1)(316+1)

Áp dụng lân lượt hằng đẳng thức số 3 (Hiệu hai bình phương) vào G, ta được kế quả:

2G = 332-1

Suy ra G = (332-1)/2

Mà (332-1)/2 < 332/2

Suy ra G<H

5)

Nhân 2 vào I, ta đươc: 2I = 2.12(52+1)(54+1)(58+1)...(532+1)

Áp dụng lân lượt hằng đẳng thức số 3 (Hiệu hai bình phương) vào I, ta được kế quả:

2I = 564-1

Suy ra I = (564-1)/2

Mà (564-1)/2 < 564-1

Suy ra I<K.

Chúc chị học tốt!

24 tháng 10 2018

\(A=3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(\Rightarrow A=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(\Rightarrow A=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(\Rightarrow A=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(\Rightarrow A=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(\Rightarrow A=\left(2^{32}-1\right)\left(2^{32}+1\right)\)

\(\Rightarrow A=2^{64}-1\)

Vậy \(A=2^{64}-1\)

5 tháng 11 2018

\(A=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(A=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(A=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(A=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(A=\left(2^{32}-1\right)\left(2^{32}+1\right)\)

\(A=2^{64}-1\)

7 tháng 10 2015

   3(22+1)(24+1)(28+1)(216+1)(232+1)(264+1)

=(22-1)(22+1)(24+1)(28+1)(216+1)(232+1)(264+1)

=(24-1)(24+1)(28+1)(216+1)(232+1)(264+1)

=(28-1)(28+1)(216+1)(232+1)(264+1)

=(216-1)(216+1)(232+1)(264+1)

=(232-1)(232+1)(264+1)

=(264-1)(264+1)

=(2128-1)

Nếu thấy đúng thì thích cho mình nha

 

6 tháng 7 2016

A= \(\frac{3\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)}{\left(2^2-1\right)}=2^{32-1}\)

mà B= \(2^{32}\)

=> A<B

6 tháng 7 2016

giải thích rõ hơn được k bạn

2 tháng 9 2016

( bài này áp dụng hằng đẳng thức \(a^2-b^2=\left(a+b\right)\left(a-b\right)\)

Ta có

\(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(=\left(2^{32}-1\right)\left(2^{32}+1\right)\)

\(=2^{64}-1\)

2 tháng 9 2016

3.(22+1)(24+1)(28+1)(216+1)(232+1)

=(22-1)(22+1)(24+1)(28+1)(216+1)(232+1)

=(24-1)(24+1)(28+1)(216+1)(232+1)

=(28-1)(28+1)(216+1)(232+1)

=(216-1)(216+1)(232+1)

=(232-1)(232+1)

=264-1

17 tháng 9 2018

A = 12 – 22 + 32 – 42 + … – 20042 + 20052

     A = 1 + (32 – 22) + (52 – 42)+ …+ ( 20052 – 20042)

     A = 1 + (3 + 2)(3 – 2) + (5 + 4 )(5 – 4) + … + (2005 + 2004)(2005 – 2004)

     A = 1 + 2 + 3 + 4 + 5 + … + 2004 + 2005

     A = ( 1 + 2002 ). 2005 : 2 = 2011015

b/  B = (2 + 1)(22 +1)(24 + 1)(28 + 1)(216 + 1)(232 + 1) – 264

     B = (22  - 1) (22 +1)(24 + 1)(28 + 1)(216 + 1)(232 + 1) – 264

     B = ( 24 – 1)(24 + 1)(28 + 1)(216 + 1)(232 + 1) – 264

     B = …

     B =(232 - 1)(232 + 1) – 264

     B = 264 – 1 – 264

     B = - 1

17 tháng 9 2018

xin lỗi nha chỗ câu a mình lộn

chỗ (1+2002)x2005:2=2011015 là sai nha 

       (1+2005)x2005:2= 2011015 là đúng nha 

15 tháng 8 2016

\(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+2\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)\)

\(=\left(2^{32}-1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)\)

\(=\left(2^{64}-1\right)\left(2^{64}+1\right)=2^{128}-1\)

15 tháng 8 2016

Ta có ; \(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)\)

= ............................................................................................

\(=\left(2^{64}-1\right)\left(2^{64}+1\right)=2^{128}-1\)