Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : S = 4 + 42 + 43 + ... + 490
=> 4S = 42 + 43 + 44 + ... + 491
=> 4S - S = (42 + 43 + 44 + ... + 491) - (4 + 42 + 43 + ... + 490)
=> 3S = 491 - 4
=> S = \(\frac{4^{91}-4}{3}\)
b) Khi đó 3S + 4 = 4x + 10
<=> 491 - 4 + 4 = 4x + 10
=> 4x + 10 491
=> x + 10 = 91
=> x = 81
Vậy x = 81
S = 4 + 42 + 43 + ... + 490
Chứng minh chia hết cho 5
S = ( 4 + 42 ) + ( 43 + 44 ) + ... + ( 489 + 490 )
= 4( 1 + 4 ) + 43( 1 + 4 ) + ... + 489( 1 + 4 )
= 4.5 + 43.5 + ... + 489.5
= 5( 4 + 43 + ... + 489 ) chia hết cho 5 ( đpcm )
Chứng minh chia hết cho 21
S = ( 4 + 42 + 43 ) + ( 44 + 45 + 46 ) + ... + ( 488 + 489 + 490 )
= 4( 1 + 4 + 42 ) + 44( 1 + 4 + 42 ) + ... + 488( 1 + 4 + 42 )
= 4.21 + 44.21 + ... + 488.21
= 21( 4 + 44 + ... + 488 ) chia hết cho 21 ( đpcm )
Tính S
S = 4 + 42 + 43 + ... + 490
4S = 4( 4 + 42 + 43 + ... + 490 )
= 42 + 43 + 44 + ... + 491
4S - S = 3S
= ( 42 + 43 + 44 + ... + 491 ) - ( 4 + 42 + 43 + ... + 490 )
= 42 + 43 + 44 + ... + 491 - 4 - 42 - 43 - ... - 490
= 491 - 4
\(3S=4^{91}-4\Rightarrow S=\frac{4^{91}-4}{3}\)
Tìm x
3S + 4 = 4x+10 ( 3S mới tính được bạn nhé '-' )
<=> 491 - 4 + 4 = 4x+10
<=> 491 = 4x+10
<=> 91 = x + 10
<=> x = 81
2
a) (2x - 1)4 = 81
<=> \(\orbr{\begin{cases}2x-1=3\\2x-1=-3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=4\\2x=-2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}}\)
a)Ta có:
P = x^5 - x
= x(x^4 - 1)
= x(x^2 - 1)(x^2 + 1)
= x(x-1)(x+1)(x^2 + 1)
(x-1) và x và (x+1) là 3 số nguyên liên tiếp
=> x(x-1)(x+1) chia hết cho 6 (cái này dễ hiểu vì trong 3 số nguyên liên tiếp luôn có 1 số chia hết cho 3, 1 số chia hết cho 2)
Xét x = 5k => x chia hết cho 5 => P chia hết cho 6*5 = 30 => đpcm
Xét x = 5k + 1 => (x-1) chia hết cho 5 => đpcm
Xét x = 5k - 1 => (x+1) chia hết cho 5 => đpcm
Xét x = 5k + 2 => (x^2 + 1) = (25k^2 + 20k + 5) chia hết cho 5 => đpcm
Xét x = 5k - 2 => (x^2 + 1) = (25k^2 - 20k + 5) chia hết cho 5 => đpcm
Tóm lại: với mọi x nguyên thì P đều chia hết cho 30
b)m4−10n2+9m4−10n2+9=(m-3)(m-1)(m+1)(m+3)
Ta có trong 4 số chẵn4 liên típ(m lẻ) lun có : 1 số chia hết cho 8,1 số chia hết cho 4, 2 số chia hết cho 2
\Rightarrow (m-3)(m-1)(m+1)(m+3) chia hết cho 128
.Nếu m= 3k \Rightarrow m-3 chia hết cho 3
.Nếu m= 3k+1 \Rightarrow m-1 chia hết cho 3
.Nếu m= 3k+2 \Rightarrow m+1 chia hết cho 3
Mà (3,128)=1 \Rightarrow ĐPCM
a)
\(5^5-5^4+5^3=5^3\cdot\left(5^2-5+1\right)=5^3\cdot21⋮7\left(đpcm\right)\)
@_@ dài quá
b) \(7^6+7^5-7^4=7^4\cdot\left(7^2+7-1\right)=7^4\cdot55⋮11\left(đpcm\right)\)
còn lại tương tự thôi bạn
@_@ ^^
1.
\(\left(x+2\right)^3=\frac{1}{8}\)
\(\Rightarrow\left(x+2\right)^3=\left(\frac{1}{2}\right)^3\)
\(\Rightarrow x+2=\frac{1}{2}\)
\(\Rightarrow x=\frac{1}{2}-2\)
\(\Rightarrow x=-\frac{3}{2}\)
Vậy \(x=-\frac{3}{2}.\)
2.
b) Ta có:
\(5^5-5^4+5^3\)
\(=5^3.\left(5^2-5+1\right)\)
\(=5^3.\left(25-5+1\right)\)
\(=5^3.21\)
Vì \(21⋮7\) nên \(5^3.21⋮7.\)
\(\Rightarrow5^5-5^4+5^3⋮7\left(đpcm\right).\)
c) Ta có:
\(2^{19}+2^{21}+2^{22}\)
\(=2^{19}.\left(1+2^2+2^3\right)\)
\(=2^{19}.\left(1+4+8\right)\)
\(=2^{19}.13\)
Vì \(13⋮13\) nên \(2^{19}.13⋮13.\)
\(\Rightarrow2^{19}+2^{21}+2^{22}⋮13\left(đpcm\right).\)
Chúc bạn học tốt!
\(2^2+\left[10^5:10^4-\left(2+3.2\right)\right]\)
\(=4+\left[10-\left(2+6\right)\right]\)
\(=4+\left(10-8\right)\)
\(=4+2=6\)
1. 22+[105:104- (2+3.2)]
=4+(10-8)
=4+2
=6
2. x chia hết 2,x chia hết 4 , x <20
cho thêm điều kiện (x là số tự nhiên)
Ta có:x chia hết cho 2, xchia hét cho 4
=> x thuộc BC(2,4)
ta có: BCNN(2,4)=4
=> x=BC(2,4)=B(4)={0;4;16;64:...}
Mà x<20 => x =o hoặc x=4 hoặc x=16