Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{10}+\frac{1}{30}+\frac{1}{60}+\frac{1}{100}+\frac{1}{150}\)
= \(\frac{1}{10}.\left(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}\right)\)
= \(\frac{1}{10}.2.\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}\right)\)
= \(\frac{1}{5}.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\right)\)
= \(\frac{1}{5}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\right)\)
= \(\frac{1}{5}.\left(1-\frac{1}{6}\right)\)
= \(\frac{1}{5}.\frac{5}{6}\)
= \(\frac{1}{6}\)
\(\frac{1}{10}+\frac{1}{30}+\frac{1}{60}+\frac{1}{100}+\frac{1}{150}\)
\(=\frac{1}{10}.\left(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}\right)\)
\(=\frac{1}{10}.2.\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}\right)\)
\(=\frac{1}{10}.2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\right)\)
\(=\frac{1}{10}.2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\right)\)
\(=\frac{1}{5}.\left(1-\frac{1}{6}\right)\)
\(=\frac{1}{5}.\frac{5}{6}\)
\(=\frac{1}{6}\)
Rất vui vì giúp đc bạn <3
Ta có:\(\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+...+\frac{1}{210}\)
\(=\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+....+\frac{1}{14.15}\)
\(=\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{14}-\frac{1}{15}\)
\(=\frac{1}{6}-\frac{1}{15}=\frac{1}{10}\)
=1/6*7+1/7*8+1/8*9...+1/14*15
=1/6-1/7+1/7-1/8+...+1/14-1/15
=1/6-1/15
=1/10
1/42 + 1/56 + 1/72 + 1/90 + 1/110 + 1/132 + 1/156 + 1/182 + 1/210
= 1/6.7 + 1/7.8 + 1/8.9 + 1/9.10 + 1/10.11 + 1/11.12 + 1/12.13 + 1/13.14 + 1/14.15
= 1/6 - 1/7 + 1/7 - 1/8 + 1/8 - 1/9 + 1/9 - 1/10 + 1/10 - 1/11 + 1/11 - 1/12 + 1/12 - 1/13 + 1/13 - 1/14 + 1/14 - 1/15
= 1/6 - 1/15
= 1/10
\(\frac{101+100+99+...+2+1}{101-100+99-...+3-2+1}=\frac{101\left(101+1\right):2}{1+1+1+...+1+1\left(51cs1\right)}=\frac{5151}{51}=101\)
\(G=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+..............+\frac{1}{3^{100}}\)
\(3G=1+\frac{1}{3}+\frac{1}{3^2}+...............+\frac{1}{3^{99}}\)
\(3G-G=\left(1+\frac{1}{3}+\frac{1}{3^2}+..........+\frac{1}{3^{99}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...............+\frac{1}{3^{100}}\right)\)
\(2G=1-\frac{1}{3^{100}}\)
\(\Rightarrow G=\left(1-\frac{1}{3^{100}}\right):2\)