Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{\left(\dfrac{2}{5}\cdot\sqrt{16}+2\cdot\sqrt{\dfrac{16}{24}}\right)}{2}\cdot\sqrt{\dfrac{1}{16}}\)
=\(\dfrac{\left(\dfrac{2}{5}\cdot4+2\cdot\sqrt{\dfrac{2}{3}}\right)}{2}\cdot\dfrac{1}{4}\)
=\(\dfrac{\left(\dfrac{8}{5}+\dfrac{2\cdot\sqrt{6}}{3}\right)}{8}\)
=\(\dfrac{\left(\dfrac{24}{15}+\dfrac{5\cdot\left(2\cdot\sqrt{6}\right)}{15}\right)}{8}\)
=\(\dfrac{\left(\dfrac{24+10\cdot\sqrt{6}}{15}\right)}{8}\)
=\(\dfrac{2\cdot\left(12+5\cdot\sqrt{6}\right)}{120}\)
=\(\dfrac{12+5\cdot\sqrt{6}}{60}\)
\(\sqrt{\dfrac{16}{169}}.\dfrac{-3}{2}.\left(\dfrac{3}{2}+\dfrac{-5}{12}\right):\left(-\dfrac{1}{2}\right)\\ =\left|\sqrt{\left(\pm\dfrac{4}{13}\right)^2}\right|.\dfrac{-3}{2}.\dfrac{13}{12}.\left(-2\right)\\ =\left(\dfrac{4}{13}.\dfrac{13}{12}\right).\left(-2.\dfrac{-3}{2}\right)\\ =\dfrac{4}{12}.3=\dfrac{12}{12}=1\)
a) \(\dfrac{12}{\left(-2\right)^n}=\dfrac{-12}{8}\)
\(\Rightarrow12.8=\left(-2\right)^n.\left(-12\right)\)
\(\Rightarrow96=\left(-2\right)^n.\left(-12\right)\)
\(\Rightarrow\left(-2\right)^n=\dfrac{96}{-12}\)
\(\Rightarrow\left(-2\right)^n=-8\)
\(\Rightarrow\left(-2\right)^n=\left(-2\right)^3\)
\(\Rightarrow n=3\)
Vậy \(n=3\)
2)
a) \(\dfrac{4}{9}\) và \(\dfrac{5}{8}\) Mẫu chung: 72
\(\dfrac{4}{9}=\dfrac{4.8}{72}=\dfrac{32}{72}\)
\(\dfrac{5}{8}=\dfrac{5.9}{72}=\dfrac{45}{72}\)
Vì \(\dfrac{32}{72}< \dfrac{45}{72}\)
Vậy \(\dfrac{4}{9}< \dfrac{5}{8}\)
b) \(-\sqrt{\dfrac{4}{9}}\) và \(\dfrac{-3}{4}\) MTC: 12
\(-\sqrt{\dfrac{4}{9}}=-\sqrt{\left(\dfrac{2}{3}\right)^2}=-\dfrac{2}{3}=\dfrac{-2.4}{12}=\dfrac{-8}{12}\)
\(-\dfrac{3}{4}=\dfrac{-3.3}{12}=\dfrac{-9}{12}\)
Vì \(\dfrac{-8}{12}>\dfrac{-9}{12}\)
Vậy \(-\sqrt{\dfrac{4}{9}}>\dfrac{-3}{4}\)
a)\(\sqrt{1}\)+\(\sqrt{9}\)+\(\sqrt{25}\)+\(\sqrt{49}\)+\(\sqrt{81}\)
=1+3+5+7+9
=25
b)=\(\dfrac{1}{2}\)+\(\dfrac{1}{3}\)+\(\dfrac{1}{6}\)+\(\dfrac{1}{4}\)
=\(\dfrac{6}{12}\)+\(\dfrac{4}{12}\)+\(\dfrac{2}{12}\)+\(\dfrac{3}{12}\)
=\(\dfrac{15}{12}\)
c) =0,2+0.3+0,4
= 0.9
d) =9-8+7
=8
j) =1,2-1,3+1.4
= (-0,1)+1,4
=1,4
g) \(\dfrac{2}{5}\)+\(\dfrac{5}{2}\)+\(\dfrac{9}{10}\)+\(\dfrac{3}{4}\)
= (\(\dfrac{4}{10}\)+\(\dfrac{15}{10}\)+\(\dfrac{9}{10}\))+\(\dfrac{3}{4}\)
= \(\dfrac{14}{5}\)+\(\dfrac{3}{4}\)
=\(\dfrac{56}{20}\)+\(\dfrac{15}{20}\)
= \(\dfrac{71}{20}\)
Nhớ tick cho mk nha~
a,|x2−13x2−13| = 3232
b, 32−1232−12 ( 2x-1)=3434
c, |x-1|+2x=2
a)\(\left|\dfrac{x}{2}-\dfrac{1}{3}\right|=\dfrac{3}{2}\)
TH1
\(\dfrac{x}{2}-\dfrac{1}{3}=\dfrac{3}{2}\)
=>\(\dfrac{x}{2}=\dfrac{11}{6}\)
=>x=\(\dfrac{11.2}{6}\)
=>x=\(\dfrac{11}{3}\)
TH2
\(\dfrac{x}{2}-\dfrac{1}{2}=-\dfrac{3}{2}\)
=>\(\dfrac{x}{2}=-\dfrac{3}{2}+\dfrac{1}{2}\)
=>\(\dfrac{x}{2}=-1\)
=>x=-2
a)
ĐKXĐ: \(2x\geq 0\Leftrightarrow x\geq 0\)
Vậy TXĐ của $x$ là \(D= [0;+\infty)\)
b)
ĐK: \((2x-1)(x+3)\neq 0\Leftrightarrow \left\{\begin{matrix} 2x-1\neq 0\\ x+3\neq 0\end{matrix}\right.\Leftrightarrow \Leftrightarrow \left\{\begin{matrix} x\neq \frac{1}{2}\\ x\neq -3\end{matrix}\right.\)
Vậy TXĐ \(D=\mathbb{R}\setminus \left\{\frac{1}{2}; -3\right\}\)
c)
ĐK: \(8x^3+1\neq 0\Leftrightarrow x^3\neq \frac{-1}{8}\Leftrightarrow x\neq \frac{-1}{2}\)
Vậy TXĐ \(D=\mathbb{R}\setminus \left\{\frac{-1}{2}\right\}\)
d)
ĐK:
\(|x-2015|+1\neq 0\Leftrightarrow |x-2015|\neq -1\Leftrightarrow x\in\mathbb{R}\)
Vậy TXĐ \(D=\mathbb{R}\)
e)
ĐK: \(\left\{\begin{matrix} |x-1,2|\neq 0\\ 2x-5\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\neq 1,2\\ x\neq 2,5\end{matrix}\right.\)
Vậy TXĐ: \(D=\mathbb{R}\setminus \left\{1,2; 2,5\right\}\)
f)
ĐK: \(x^2-4\neq 0\Leftrightarrow (x-2)(x+2)\neq 0\Leftrightarrow x\neq \pm 2\)
Vậy TXĐ: \(D=\mathbb{R}\setminus \left\{\pm 2\right\}\)
\(=>2A=\dfrac{1}{2^2}+\dfrac{1}{2^3}+....+\dfrac{1}{2^{101}}\)
\(=>2A-A=\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{101}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+....+\dfrac{1}{2^{100}}\right)\)
\(=>A=\dfrac{1}{2^{101}}-\dfrac{1}{2}\)
\(A=\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{4031}{2015^2.2016^2}\)
\(A=\dfrac{2^2-1^2}{1^2.2^2}+\dfrac{3^2-2^2}{2^2.3^2}+\dfrac{4^2-3^2}{3^2.4^2}+...+\dfrac{2016^2-2015^2}{2015^2.2016^2}\)
\(A=1-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+\dfrac{1}{3^2}-\dfrac{1}{4^2}+...+\dfrac{1}{2015^2}-\dfrac{1}{2016^2}\)
\(A=1-\dfrac{1}{2016^2}< 1\left(đpcm\right)\)
\(\left(1,5+2\dfrac{1}{2}-2\sqrt{2^2}\right):\left(4\dfrac{1}{4}-\sqrt{1,96}+0,9\right)\)
= ( 1,5 + 2,5 - 2.2 ) : (4,25 - 1,4 + 0,9)
= ( 4 - 4 ) : ( 3,75 )
= 0 : 3,75
= 0
Chúc bạn học tốt