Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sửa lại đề : 101+100+99+98+......+3+2+1/101-100+99-98+.....+3-2+1
tử số là :
(101+1).101:2=..... (tự tih)
ta có mẫu số : (101 - 100)+(99 -98)+......+(3-2)+1
= 1+1+.....+1+1
mà mẫu số có 101 số => mấu số =101
=> phân số đó = 5151/101=51
ủng hộ nha
\(\frac{101+100+99+98+...+3+2+1}{101-100+99-98+...+3-2+1}\)
\(=\frac{\left(101+1\right).101:2}{1+1+1+...+1}\)
51 số 1
\(=\frac{5151}{51}\)
\(=101\)
( 101+100+.......+3+2+1 ) / ( 101-100+100_99+........+ 4 - 3 + 2 - 1 )
= [ ( 101+1 )+( 100+2 )+....+( 52+50 )+ 51 ] / [ ( 101-100 )+(100-99)+........+( 4 - 3 )+( 2 - 1 )
= 102+102+.........+102+51 / 1+1+..............+1+1
= { [ 51( cặp) * 102 ] +51 } / [ 51(cặp) * 1 ]
= 5252 + 51 / 51
= 5253 / 51
= 103
a)101+100+...+3+2+1
số số hạng:(101-1):1+1=101
tổng: (101+1)*101:2=5151
Câu trả lời : A= (101-100) + (99-98) + ... + (5-4) + (3-2) +1
A= 1 + 1 + ... + 1 + 1 + 1
A= 1 x 51
A= 51
Ta thấy: 101+100+99+98+...+3+2+1 có(101-1+1=101 số)
Tổng của tử số của A là:
(101+1).101:2=5151.
Mẫu số cũng có số hạng bằng số hạng tử số,có số cặp ở mẫu là:
101:2=50(dư 1 số)(số 1).
Vậy tổng mẫu số của A là :
(101-100).50+1=51.
Vậy
A=5151:51=101
A = \(\frac{1}{101}\) + \(\frac{2}{101}\) + \(\frac{3}{101}\) + ... + \(\frac{101}{101}\)
A = \(\frac{1+2+3+...+101}{101}\)
Số các số hạng của tử số là :
( 101 - 1 ) : 1 + 1 = 101 ( số )
Tử số của A là :
( 101 + 1 ) x 101 : 2 = 5151
Vậy A = \(\frac{5151}{101}\) = \(51\)
A=1/101+2/101+3/101+....+101/101
=> A = 1+2+3+...+101/101
=> A = 5151/101
=> A = 51.
Mình giải thích chỗ 1+2+3+...101 nha.
Số số hạng là:
101 - 1 + 1 = 101 ( số )
Tổng là:
[(101+1).101]/2 = 5151
Tính
A=-1-1/2×(1+2)-1/3×(1+2+3)-...-1/101+(1+2+3+...+101)
Giải giúp mình nhé mai mình phải nộp bài rồi
Giải:
Ta có: 1 + 2 + 3 + 4 + ... + 100 + 101 = ( 100 +1 ) + (99 + 2 ) +... + ( 50 + 51 ) + 101 = 101 + 101 +... + 101 + 101 = 101. 51
1 - 2 + 3 - 4 + ... - 100 +101 = 1+ ( 3 - 2) + ( 5 - 4 ) +... + ( 101 - 100 ) = 1 + 1 +... + 1 = 1. 51
=> \(\frac{1+2+3+4+5+...+100+101}{1-2+3-4+5-...-100+101}=\frac{51.101}{51.1}=\frac{101}{1}=101\)