Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt tổng của 2005 số hạng đầu tiên của dãy là S
\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+..+\frac{1}{2005.2006}\)
\(S=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+..+\frac{2006-2005}{2005.2006}\)
\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+..+\frac{1}{2005}-\frac{1}{2006}\)
\(S=1-\frac{1}{2006}=\frac{2005}{2006}\)

A = 1.2 + 2.3 + 3.4 + ... + 2005.2006
3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 2005.2006.3
3A = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 2005.2006.(2007 - 2004)
3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 2005.2006.2007 - 2004.2005.2006
3A = 2005.2006.2007
A = 2690738070
Có A=1.2+2.3+3.4+...+2005.2006
3A=1.2.3+2.3.3+3.4.3+....+2005.2006.3
3A=1.2.3+2.3.(4-1)+3.4.(5-2)+....+2005.2006.(2007-2004)
3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+....+2005.2006.2007-2004.2005.2006
3A=2005.2006.2007
A=(2005.2006.2007):3
Vậy A=....

Ta có: \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2020\cdot2021}+\dfrac{1}{2021\cdot2022}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2020}-\dfrac{1}{2021}+\dfrac{1}{2021}-\dfrac{1}{2022}\)
\(=1-\dfrac{1}{2022}=\dfrac{2021}{2022}\)
1/1x2+1/2x3+1/3x4+...+1/2020x2021+1/2021x2022
=1/1-1/2+1/2-1/3+1/3-1/4+...+1/2020-1/2021+1/2021-1/2022.
=1/1-1/2022
=2021/2022

Dễ thôi!
Ta có: 1/1.2 = 1/1 - 1/2 ; 1/2.3 = 1/2 - 1/3 ; 1/3.4 = 1/3 - 1/4 ; ...;1/99.100 = 1/99 - 1/100
Như vậy thì bài toán trên = 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ...+ 1/99 - 1/100
Vậy tổng trên là:
1 - 1/100
= 99/100
tk nha

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{999.1000}+1\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{1000}+1\)
\(=1-\frac{1}{1000}+1\)
\(=\frac{1000}{1000}-\frac{1}{1000}+\frac{1000}{1000}\)
\(=\frac{1999}{1000}\)
Tham khảo nhé~

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{100}{100}-\frac{1}{100}\)
\(=\frac{99}{100}\)

A=1/1.2+1/2.3+1/3.4+..+1/99.100
=1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100
=1-1/100
=99/100

\(A=\frac{1}{1.2}+\frac{1}{2.3}+.......+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+............+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}\)
\(=\frac{49}{50}\)
A=\(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+\(\frac{1}{3.4}\)+...+\(\frac{1}{49.50}\)
A=1-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+ \(\frac{1}{3}\) - \(\frac{1}{4}\)+...+\(\frac{1}{49}\)-\(\frac{1}{50}\)
A=1-\(\frac{1}{50}\)
A=\(\frac{49}{50}\)

a) x-2006 = 1-1/2+1/2-1/3+1/3-.....-1/2006
=>x-2006= 1- 1/2006
=> x-2006 = 2005/2006
=> x = 2006 \(\frac{2005}{2006}\)
a, \(\Rightarrow\frac{2-1}{1.2}+\frac{3-2}{2.3}+...+\frac{2006-2005}{2005.2006}=x-2006\)
\(\Rightarrow\frac{2}{1.2}-\frac{1}{1.2}+\frac{3}{2.3}-\frac{2}{2.3}+...+\frac{2006}{2005.2006}-\frac{2005}{2005.2006}=x-2006\)
Giản ước tử cho mẫu của từng phân số ta được:
Đề bài phần b không rõ lắm nên mình chưa làm
1/1.2+1/2.3+1/3.4+...+1/2005.2006=(1-1/2)+(1/2-1/3)+...+(1/2005-1/2006)=1-1/2+1/2-1/3+...+1/2005-1/2006
=1-(1/2-1/2)+...-1/(1/2005-1/2005)-1/2006=1-1/2006=2005/2006
k mình nha
CẢM ƠN BẠN NHIỀU