Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}=\frac{\left(2^2\right)^5.\left(3^2\right)^4-2.\left(2.3\right)^9}{2^{10}.3^8+\left(3.2\right)^8.2^2.5}=\frac{2^{10}.3^8-2.2^9.3^9}{2^{10}.3^8+3^8.2^8.2^2.5}=\frac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+3^8.2^{10}.5}\)
\(=\frac{2^{10}.3^8.\left(1-3\right)}{2^{10}.3^8.\left(1+5\right)}=\frac{-2}{6}=\frac{-1}{3}\)
b) đặt A=2100 - 299 + 298 - 297 +...+ 22 - 2
=>2A=2101-2100+299-298+...+23-22
=>2A+A=2101-2100+299-298+...+23-22+2100 - 299 + 298 - 297 +...+ 22 - 2
=>3A=2101-2
=>A=\(\frac{2^{101}-2}{3}\)
B=(1-2-3+4)+(5-6-7+8)+...+(97-98-99+100)
B=0+0+..+0
B=0
C=2^100-(2^99+2^98+2^97+...+1)
đặt D=2^99+2^98+2^97+...+1
=>D=2^100-1
=>C=2^100-(2^100-1)=1
Gọi 1 + 22 + 24 + 26 +......+2100 là A
Có A=1 + 22 + 24 + 26 +......+2100
=>22A=22+24+26+28+...+2102
=> 4A-A=(22+24+26+28+...+2102)-(1 + 22 + 24 + 26 +......+2100 )
3A=2102-1
A=(2102-1):3
Trả lời:
Đặt \(A=1+2^2+2^4+2^6+...+2^{100}\)
\(2^2A=2^2+2^4+2^6+...+2^{102}\)
\(4A=2^2+2^4+2^6+...+2^{102}\)\(4A-A=\left(2^2+2^4+2^6+...+2^{102}\right)-\left(1+2^2+2^4+...+2^{100}\right)\)
\(3A=2^2+2^4+2^6+...+2^{102}-1-2^2-2^4-...-2^{100}\)
\(3A=\left(2^2-2^2\right)+\left(2^4-2^4\right)+...+\left(2^{100}-2^{100}\right)+\left(2^{102}-1\right)\)
\(3A=0+0+...+0+2^{102}-1\)
\(3A=2^{102}-1\)
\(A=\frac{2^{102}-1}{3}\)
Vậy\(A=\frac{2^{102}-1}{3}\)
Hok tốt!
Good girl