Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(I=\left(1-\frac{1}{9}\right)\left(1-\frac{2}{9}\right)\left(1-\frac{3}{9}\right)...\left(1-\frac{2005}{9}\right)\)
\(I=\left(1-\frac{1}{9}\right)\left(1-\frac{2}{9}\right)...\left(1-\frac{9}{9}\right)...\left(1-\frac{2005}{9}\right)\)
\(I=\left(1-\frac{1}{9}\right)\left(1-\frac{2}{9}\right)...\left(1-1\right)...\left(1-\frac{2005}{9}\right)\)
\(I=\left(1-\frac{1}{9}\right)\left(1-\frac{2}{9}\right)...0...\left(1-\frac{2005}{9}\right)\)
I = 0
=> I = 0
\(a,\frac{15}{34}+\frac{7}{21}+\frac{19}{34}-\frac{20}{15}+\frac{3}{7}\)
\(=>\left(\frac{15}{34}+\frac{19}{34}\right)+\left(\frac{7}{21}+\frac{3}{7}\right)-\frac{20}{15}\)
\(=>1+\frac{16}{21}-\frac{20}{15}\)
\(=>\frac{37}{21}-\frac{20}{15}\)
\(=>\frac{3}{7}\)
\(b,12-8\cdot\left(\frac{3}{2}\right)^3\)
\(=>12-8\cdot\frac{27}{8}\)
\(=>12-27\)
\(=>-15\)
\(c,\left(\frac{1}{9}\right)^{2005}\cdot9^{2005}-96^2:24^2\)
\(=>\left(\frac{1^{2005}^{ }}{9^{2005}}\cdot9^{2005}\right)-\left(96^2:24^2\right)\)
\(=>\left(1^{2005}\right)-16\)
\(=>1-16\)
\(=>-15\)
a) 1+2+3+4+5+...+n = n(n+1) / 2
b)2+4+6+...+2n = [(2n-2):2+1] . (2n+2)/2 = n . ( 2n+2) /2
Ta có: A = 1+(-2)+3+(-4)+....+2003+(-2004) = 2005
=> A = (-1)+(-1)+(-1)+....+(-1) = (-1) x 2004 = -2004
\(\left(1-\dfrac{1}{9}\right)\left(1-\dfrac{2}{9}\right)...\left(1-\dfrac{2005}{9}\right)\)
\(=\left(1-\dfrac{1}{9}\right)\left(1-\dfrac{2}{9}\right)...\left(1-\dfrac{9}{9}\right)...\left(1-\dfrac{2005}{9}\right)\)
\(=\left(1-\dfrac{1}{9}\right)\left(1-\dfrac{2}{9}\right)\cdot...\cdot0\cdot...\cdot\left(1-\dfrac{2005}{9}\right)=0\)
\(\left(1-\dfrac{1}{9}\right).\left(1-\dfrac{2}{9}\right)...\left(1-\dfrac{2005}{9}\right)\)
\(=\left(1-\dfrac{1}{9}\right).\left(1-\dfrac{2}{9}\right)...\left(1-\dfrac{9}{9}\right)...\left(1-\dfrac{2005}{9}\right)\)
\(=\left(1-\dfrac{1}{9}\right).\left(1-\dfrac{2}{9}\right)...0...\left(1-\dfrac{2005}{9}\right)=0\)