Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. 32x - 5.(3.2)x + 22x.4 =0
(=) \(\left(\dfrac{3}{2}\right)^{^{2x}}-5.\left(\dfrac{3}{2}\right)^x+2^{2x}.4\) =0
đặt \(\left(\dfrac{3}{2}\right)^x=t\) đk: t > 0
=> pttt: t2 - 5t +4 =0
(=)\(\left[{}\begin{matrix}t=1\\t=4\end{matrix}\right.\)
(=) \(\left[{}\begin{matrix}\left(\dfrac{3}{2}\right)^x=1\\\left(\dfrac{3}{2}\right)^x=4\end{matrix}\right.\)
(=)\(\left[{}\begin{matrix}x=0\\x=\log_{\dfrac{3}{2}}4\end{matrix}\right.\)
b. 3.52x + 2.72x - 5.(5.7)x =0
(=) \(3+2.\left(\dfrac{7}{5}\right)^{2x}-5.\left(\dfrac{7}{5}\right)^x=0\)
đặt \(t=\left(\dfrac{7}{5}\right)^x\) đk: t > 0
pttt: 3+2t2-5t=0
(=) \(\left[{}\begin{matrix}t=1\\t=\dfrac{3}{2}\end{matrix}\right.\)
(=)\(\left[{}\begin{matrix}x=0\\x=\log_{\dfrac{7}{5}}\dfrac{3}{2}\end{matrix}\right.\)
\(C=\left(0,5\right)^{-4}-625^{0,25}-\left(2\frac{1}{4}\right)^{-1\frac{1}{2}}+19\left(-3\right)^{-3}=\left(2^{-1}\right)^{-4}-\left(5^4\right)^{\frac{1}{4}}-\left[\left(\frac{3}{2}\right)^2\right]^{-\frac{3}{2}}+19.\frac{1}{\left(-3\right)^3}\)
\(=2^4-5-\left(\frac{3}{2}\right)^{-3}-\frac{19}{27}\)
\(=11-\left(\frac{2}{3}\right)^3-\frac{19}{27}=10\)
\(C=\left(0,5\right)^{-4}-625^{0,25}-\left(2\frac{1}{4}\right)^{-1\frac{1}{2}}+19.\left(-3\right)^{-3}\)
\(=\left(\frac{1}{2}\right)^{-4}-625^{\frac{1}{4}}-\left(\frac{9}{4}\right)^{-\frac{3}{2}}+19.\left(-3\right)^{-3}\)
\(=2^4-\sqrt[4]{625}-\left(\frac{4}{9}\right)^{\frac{3}{2}}+19.\left(\frac{1}{\left(-3\right)^3}\right)\)
=\(16-5-\sqrt[2]{\left(\frac{4}{9}\right)^3}+19.\frac{1}{-27}=11-\frac{8}{27}-\frac{19}{27}=10\)
a) \(\left(\dfrac{1}{16}\right)^{-\dfrac{3}{4}}+810000^{0.25}-\left(7\dfrac{19}{32}\right)^{\dfrac{1}{5}}\)
\(=\left(\dfrac{1}{2}\right)^{4.\left(-\dfrac{3}{4}\right)}+\left(30\right)^{4.0,25}-\left(\dfrac{243}{32}\right)^{\dfrac{1}{5}}\)
\(=\left(\dfrac{1}{2}\right)^{-3}+30-\left(\dfrac{3}{2}\right)^{5.\dfrac{1}{5}}\)
\(=2^3+30-\dfrac{3}{2}\)
\(=36,5\)
b) \(=\left(0,1\right)^{3.\left(-\dfrac{1}{3}\right)}-2^{-2}.2^{6.\dfrac{2}{3}}-\left[\left(2\right)^3\right]^{-\dfrac{4}{3}}\)
\(=0,1^{-1}-2^2-2^{-4}\)
\(=10-4-\dfrac{1}{16}\)
\(=\dfrac{95}{16}\)
Chiều cao AH của tứ diện ABCD chính là khoảng cách từ điểm A đến mp (BCD) :
- 0 , 5 - 4 - 625 0 , 25 - 2 1 4 - 1 1 2 = 289 27