K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2019

- 0 , 5 - 4 - 625 0 , 25 - 2 1 4 - 1 1 2 = 289 27

18 tháng 11 2017

a. 32x - 5.(3.2)x + 22x.4 =0

(=) \(\left(\dfrac{3}{2}\right)^{^{2x}}-5.\left(\dfrac{3}{2}\right)^x+2^{2x}.4\) =0

đặt \(\left(\dfrac{3}{2}\right)^x=t\) đk: t > 0

=> pttt: t2 - 5t +4 =0

(=)\(\left[{}\begin{matrix}t=1\\t=4\end{matrix}\right.\)

(=) \(\left[{}\begin{matrix}\left(\dfrac{3}{2}\right)^x=1\\\left(\dfrac{3}{2}\right)^x=4\end{matrix}\right.\)

(=)\(\left[{}\begin{matrix}x=0\\x=\log_{\dfrac{3}{2}}4\end{matrix}\right.\)

18 tháng 11 2017

b. 3.52x + 2.72x - 5.(5.7)x =0

(=) \(3+2.\left(\dfrac{7}{5}\right)^{2x}-5.\left(\dfrac{7}{5}\right)^x=0\)

đặt \(t=\left(\dfrac{7}{5}\right)^x\) đk: t > 0

pttt: 3+2t2-5t=0

(=) \(\left[{}\begin{matrix}t=1\\t=\dfrac{3}{2}\end{matrix}\right.\)

(=)\(\left[{}\begin{matrix}x=0\\x=\log_{\dfrac{7}{5}}\dfrac{3}{2}\end{matrix}\right.\)

2 tháng 9 2017

Giải bài 3 trang 68 sgk Hình học 12 | Để học tốt Toán 12

Giải bài 3 trang 68 sgk Hình học 12 | Để học tốt Toán 12

10 tháng 5 2016

\(C=\left(0,5\right)^{-4}-625^{0,25}-\left(2\frac{1}{4}\right)^{-1\frac{1}{2}}+19\left(-3\right)^{-3}=\left(2^{-1}\right)^{-4}-\left(5^4\right)^{\frac{1}{4}}-\left[\left(\frac{3}{2}\right)^2\right]^{-\frac{3}{2}}+19.\frac{1}{\left(-3\right)^3}\)

                                                                                  \(=2^4-5-\left(\frac{3}{2}\right)^{-3}-\frac{19}{27}\)

                                                                                  \(=11-\left(\frac{2}{3}\right)^3-\frac{19}{27}=10\)

 

10 tháng 5 2016

\(C=\left(0,5\right)^{-4}-625^{0,25}-\left(2\frac{1}{4}\right)^{-1\frac{1}{2}}+19.\left(-3\right)^{-3}\)

\(=\left(\frac{1}{2}\right)^{-4}-625^{\frac{1}{4}}-\left(\frac{9}{4}\right)^{-\frac{3}{2}}+19.\left(-3\right)^{-3}\)

\(=2^4-\sqrt[4]{625}-\left(\frac{4}{9}\right)^{\frac{3}{2}}+19.\left(\frac{1}{\left(-3\right)^3}\right)\)

=\(16-5-\sqrt[2]{\left(\frac{4}{9}\right)^3}+19.\frac{1}{-27}=11-\frac{8}{27}-\frac{19}{27}=10\)

3 tháng 10 2018

Đáp án : A.

22 tháng 11 2017

 

 

25 tháng 5 2019

Chiều cao AH của tứ diện ABCD chính là khoảng cách từ điểm A đến mp (BCD) :

Giải bài 3 trang 92 sgk Hình học 12 | Để học tốt Toán 12

23 tháng 11 2023

1: \(2^x=64\)

=>\(x=log_264=6\)

2: \(2^x\cdot3^x\cdot5^x=7\)

=>\(\left(2\cdot3\cdot5\right)^x=7\)

=>\(30^x=7\)

=>\(x=log_{30}7\)

3: \(4^x+2\cdot2^x-3=0\)

=>\(\left(2^x\right)^2+2\cdot2^x-3=0\)

=>\(\left(2^x\right)^2+3\cdot2^x-2^x-3=0\)

=>\(\left(2^x+3\right)\left(2^x-1\right)=0\)

=>\(2^x-1=0\)

=>\(2^x=1\)

=>x=0

4: \(9^x-4\cdot3^x+3=0\)

=>\(\left(3^x\right)^2-4\cdot3^x+3=0\)

Đặt \(a=3^x\left(a>0\right)\)

Phương trình sẽ trở thành:

\(a^2-4a+3=0\)

=>(a-1)(a-3)=0

=>\(\left[{}\begin{matrix}a-1=0\\a-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=1\left(nhận\right)\\a=3\left(nhận\right)\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}3^x=1\\3^x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\)

5: \(3^{2\left(x+1\right)}+3^{x+1}=6\)

=>\(\left[3^{x+1}\right]^2+3^{x+1}-6=0\)

=>\(\left(3^{x+1}\right)^2+3\cdot3^{x+1}-2\cdot3^{x+1}-6=0\)

=>\(3^{x+1}\left(3^{x+1}+3\right)-2\left(3^{x+1}+3\right)=0\)

=>\(\left(3^{x+1}+3\right)\left(3^{x+1}-2\right)=0\)

=>\(3^{x+1}-2=0\)

=>\(3^{x+1}=2\)

=>\(x+1=log_32\)

=>\(x=-1+log_32\)

6: \(\left(2-\sqrt{3}\right)^x+\left(2+\sqrt{3}\right)^x=2\)
=>\(\left(\dfrac{1}{2+\sqrt{3}}\right)^x+\left(2+\sqrt{3}\right)^x=2\) 

=>\(\dfrac{1}{\left(2+\sqrt{3}\right)^x}+\left(2+\sqrt{3}\right)^x=2\)

Đặt \(b=\left(2+\sqrt{3}\right)^x\left(b>0\right)\)

Phương trình sẽ trở thành:

\(\dfrac{1}{b}+b=2\)

=>\(b^2+1=2b\)

=>\(b^2-2b+1=0\)

=>(b-1)2=0

=>b-1=0

=>b=1

=>\(\left(2+\sqrt{3}\right)^x=1\)

=>x=0

7: ĐKXĐ: \(x^2+3x>0\)

=>x(x+3)>0

=>\(\left[{}\begin{matrix}x>0\\x< -3\end{matrix}\right.\)
\(log_4\left(x^2+3x\right)=1\)

=>\(x^2+3x=4^1=4\)

=>\(x^2+3x-4=0\)

=>(x+4)(x-1)=0

=>\(\left[{}\begin{matrix}x+4=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-4\left(nhận\right)\end{matrix}\right.\)