![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Để \(\frac{-3}{x-1}\in Z\) \(\Leftrightarrow-3⋮\left(x-1\right)\)
\(\Rightarrow x-1\inƯ\left(-3\right)=\left\{-1;1;-3;3\right\}\)
\(\Rightarrow x=\left\{2;0;4;-2\right\}\)
b) Để \(\frac{-4}{2x-1}\in Z\Leftrightarrow-4⋮\left(2x-1\right)\)
\(\Rightarrow2x-1\inƯ\left(-4\right)=\left\{-1;1;-2;2;-4;4\right\}\)
\(\Rightarrow2x=\left\{0;2;-1;3;-3;5\right\}\)
\(\Rightarrow x=\left\{0;1;\frac{-1}{2};\frac{3}{2};\frac{-3}{2};\frac{5}{2}\right\}\)
Mà \(x\in Z\) \(\Rightarrow x=\left\{0;2\right\}\)
c) \(\frac{3x+7}{x-1}=\frac{3\left(x-1\right)+10}{x-1}\)
Vì \(3\left(x-1\right)⋮\left(x-1\right)\Rightarrow10⋮\left(x-1\right)\)
\(\Rightarrow x-1\inƯ\left(10\right)=\left\{1;-1;2;-2;5;-5;10;-10\right\}\)
\(\Rightarrow x=\left\{2;0;3;-1;6;-4;11;-9\right\}\)
d) Tương tự
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\frac{-3}{x-1}\Rightarrow\frac{-3}{x-1}=-3\)để x nguyên
\(\frac{-3}{1}=3\Rightarrow\frac{-3}{1+1}=x=2\)
\(\Rightarrow x=2\)
b)\(\frac{-4}{2x-1}=-4\)để x nguyên
\(\frac{-4}{1}=-4\Rightarrow\frac{-4}{\left(1+1\right)\div2}=x=1\)
\(\Rightarrow x=1\)
c) \(\frac{3x+7}{x-1}=5\)để x nguyên
\(\frac{25}{5}=5\Rightarrow\frac{\left(25-7\right)\div3}{5+1}=x=6\)
\(\Rightarrow x=6\)
d) \(\frac{4x-1}{3-x}=7\)để x nguyên
\(\frac{7}{1}=7\Rightarrow\frac{\left(7+1\right)\div4}{3-1}=x=2\)
\(\Rightarrow x=2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
để các phân số sao là số nguyên thì mẫu phải là ước của tử
dựa vào đây rồi em tự làm nhé , chị ngại làm lắm
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Để \(\frac{3}{x-1}\inℤ\Rightarrow\left(x-1\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow x\in\left\{-2;0;2;4\right\}\)
b) Để \(\frac{4}{2x-1}\inℤ\Rightarrow\left(2x-1\right)\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
=> \(2x\in\left\{-3;-1;0;2;3;5\right\}\)
=> \(x\in\left\{-\frac{3}{2};-\frac{1}{2};0;1;\frac{3}{2};\frac{5}{2}\right\}\)
c) Ta có: \(\frac{3x+7}{x-7}=\frac{\left(3x-21\right)+28}{x-7}=2+\frac{28}{x-7}\)
Xong xét các TH như a,b nhé
thanks nhưng mai mik mới t.i.k đc bạn
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 6: Tìm các số nguyên 𝑥 , 𝑦 , 𝑧 x,y,z Bạn đã cho một hệ phương trình phức tạp, nhưng tôi sẽ cố gắng làm rõ và giải quyết từng bước. Các phương trình là: 48 4 8 84 = 𝑥 − 10 𝑥 − 10 48 8 4 84=x−10 −10 x − 10 𝑥 = − 7 𝑦 −10x=−7y 𝑦 − 7 = 𝑧 − 24 𝑧 − 24 y−7=z−24 −24 z Chúng ta sẽ phân tích từng phương trình. Phương trình 1: 48 4 8 84 = 𝑥 − 10 𝑥 − 10 48 8 4 84=x−10 −10 x Dường như có sự nhầm lẫn trong cách viết phương trình này, vì nó không rõ ràng. Tuy nhiên, tôi đoán bạn muốn nói 48 4 8 = 𝑥 − 10 × 𝑥 − 10 48 8 4 =x−10× −10 x . Để làm rõ, 48 4 8 48 8 4 có thể viết là 48.5 48.5 (tức là 48 + 4 8 = 48.5 48+ 8 4 =48.5). Phương trình trên có thể viết lại như sau: 48.5 = 𝑥 + 𝑥 48.5=x+x 48.5 = 2 𝑥 48.5=2x 𝑥 = 48.5 2 = 24.25 x= 2 48.5 =24.25 Tuy nhiên, 𝑥 = 24.25 x=24.25 không phải là một số nguyên, nên có thể có sự nhầm lẫn trong cách viết phương trình. Phương trình 2: − 10 𝑥 = − 7 𝑦 −10x=−7y Ta có − 10 𝑥 = − 7 𝑦 −10x=−7y, hay là 10 𝑥 = 7 𝑦 10x=7y. Phương trình này cho thấy rằng 𝑥 x và 𝑦 y phải có một tỷ lệ đặc biệt sao cho khi nhân 𝑥 x với 10, kết quả phải là nhân 𝑦 y với 7. Do 𝑥 x và 𝑦 y là các số nguyên, ta có thể tìm các giá trị của 𝑥 x và 𝑦 y thỏa mãn điều kiện này. Phương trình 3: 𝑦 − 7 = 𝑧 − 24 𝑧 − 24 y−7=z−24 −24 z Giống như phương trình đầu tiên, biểu thức này không hoàn toàn rõ ràng. Tuy nhiên, nếu giả sử bạn muốn viết 𝑦 − 7 = 𝑧 + 𝑧 24 y−7=z+ 24 z , ta có thể tiếp tục phân tích. Bài 7: Biểu thức 𝐴 = 3 𝑛 − 2 𝑛 − 2 A= n−2 3n−2 a) Tìm các số nguyên 𝑛 n để 𝐴 A là phân số: Biểu thức 𝐴 = 3 𝑛 − 2 𝑛 − 2 A= n−2 3n−2 là một phân số nếu mẫu số khác 0. Do đó, 𝑛 − 2 ≠ 0 n−2 =0, tức là 𝑛 ≠ 2 n =2. Vậy, 𝐴 A sẽ là phân số với tất cả các số nguyên 𝑛 n ngoại trừ 𝑛 = 2 n=2. b) Tìm các số nguyên 𝑛 n để 𝐴 A là số nguyên: Để 𝐴 = 3 𝑛 − 2 𝑛 − 2 A= n−2 3n−2 là một số nguyên, mẫu số phải chia hết cho tử số. Ta xét phép chia 3 𝑛 − 2 𝑛 − 2 n−2 3n−2 . Ta thực hiện phép chia polynom: 3 𝑛 − 2 𝑛 − 2 = 3 + 4 𝑛 − 2 n−2 3n−2 =3+ n−2 4 Để 𝐴 A là một số nguyên, phần dư 4 𝑛 − 2 n−2 4 phải là một số nguyên, nghĩa là 𝑛 − 2 n−2 phải là một ước của 4. Các ước của 4 là: ± 1 , ± 2 , ± 4 ±1,±2,±4. Do đó, 𝑛 − 2 n−2 có thể là 1 , − 1 , 2 , − 2 , 4 , − 4 1,−1,2,−2,4,−4. Từ đó, ta có: 𝑛 − 2 = 1 ⇒ 𝑛 = 3 n−2=1⇒n=3 𝑛 − 2 = − 1 ⇒ 𝑛 = 1 n−2=−1⇒n=1 𝑛 − 2 = 2 ⇒ 𝑛 = 4 n−2=2⇒n=4 𝑛 − 2 = − 2 ⇒ 𝑛 = 0 n−2=−2⇒n=0 𝑛 − 2 = 4 ⇒ 𝑛 = 6 n−2=4⇒n=6 𝑛 − 2 = − 4 ⇒ 𝑛 = − 2 n−2=−4⇒n=−2 Vậy các giá trị của 𝑛 n để 𝐴 A là một số nguyên là: 𝑛 = − 2 , 0 , 1 , 3 , 4 , 6 n=−2,0,1,3,4,6. Hy vọng tôi đã giúp bạn hiểu rõ hơn về các bài toán này! Nếu cần giải thích thêm hoặc có thêm câu hỏi, bạn có thể hỏi tiếp.
Để A nguyên thì x-3 chia hết cho 7.
Khi đó:x-3=7a(với a thuộc Z)
<=>x=7a+3
Vậy để A=\(\frac{x-3}{7}\) thuộc Z thì x=7a+3 với a thuộc Z