\(\frac{x}{4}=\frac{y}{3};\frac{y}{6}=\frac{z}{11}\) và x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2016

\(\frac{x}{4}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{6}\)

\(\Rightarrow\frac{x}{8}=\frac{y}{6}=\frac{z}{11}\)

Đặt \(\frac{x}{8}=\frac{y}{6}=\frac{z}{11}=k\Rightarrow x=8k;y=6k;z=11k\)

\(\Rightarrow x.y.z=-528\Rightarrow8k.6k.11k=-528\Rightarrow528.k^3=-528\)

\(\Rightarrow k^3=-1\Rightarrow k=-1\)

\(\Rightarrow\hept{\begin{cases}x=-8\\y=-6\\z=-11\end{cases}}\)

3 tháng 10 2016

x/4=y/3;

y/6=z/11 => y/3=2z/11 => y=6z/11

và x/4=y/3=2z/11 => x=8z/11

x.y.z=8z/11.6z/11.z=-528 => z3=-(528.11.11)/(8.6)=-1331 = -113  => z=-11;

                                                                                                          x=-8.11/11=-8;

                                                                                                          y=-6.11/11=-6

2 tháng 10 2016

a) \(\frac{x}{y}=\frac{15}{7}\Leftrightarrow\)\(\frac{x}{15}=\frac{y}{17}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có:

\(\frac{x}{15}=\frac{y}{17}=\frac{x-2y}{15-2\cdot17}=\frac{16}{-19}\)

=> \(\begin{cases}x=-\frac{240}{19}\\y=-\frac{272}{19}\end{cases}\)

b) \(\frac{x}{y}=\frac{8}{11};\frac{z}{y}=\frac{3}{11}\)

\(\Leftrightarrow\)\(\frac{x}{8}=\frac{y}{11};\frac{z}{3}=\frac{y}{11}\)

\(\Leftrightarrow\)\(\frac{x}{8}=\frac{y}{11}=\frac{z}{3}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có:

\(\frac{x}{8}=\frac{y}{11}=\frac{z}{3}=\frac{x+y-z}{8+11-3}=\frac{80}{16}=5\)

\(\Rightarrow\begin{cases}x=40\\y=55\end{cases}\)

c) \(\frac{x}{4}=\frac{y}{3}\Rightarrow\)\(\frac{x}{8}=\frac{y}{6}\)

=> \(\frac{x}{8}=\frac{y}{6}=\frac{z}{11}\)

Đặt \(\frac{x}{8}=\frac{y}{6}=\frac{z}{11}=k\Rightarrow x=8k;y=6k;z=11k\)

Có \(xyz=-528\)

\(\Leftrightarrow8k\cdot6k\cdot11k=-528\)

\(\Leftrightarrow528\cdot k^3=-528\)

\(\Leftrightarrow k^3=-1\Leftrightarrow k=-1\)

Với k=-1 thì : x=-8;y=-6;x=-11

2 tháng 10 2016

a) Từ \(\frac{x}{y}=\frac{15}{7}\Rightarrow\frac{x}{15}=\frac{y}{7}\)

Áp dụng t/c dãy tỉ số bằng nhau,ta có:

\(\frac{x}{15}=\frac{y}{7}=\frac{x-2y}{15-14}=16\)

=> \(\begin{cases}x=240\\y=112\end{cases}\)

b) Từ \(\frac{x}{y}=\frac{8}{11}\Rightarrow\frac{x}{8}=\frac{y}{11}\)

\(\frac{z}{y}=\frac{3}{11}\Rightarrow\frac{z}{3}=\frac{y}{11}\)

=> \(\frac{x}{8}=\frac{y}{11}=\frac{z}{3}\)

Áp dụng t/c dãy tỉ số bằng nhau, ta có:

\(\frac{x}{8}=\frac{y}{11}=\frac{z}{3}=\frac{x+y-z}{8+11-3}=\frac{80}{16}=5\)

=> \(\begin{cases}x=40\\y=55\\z=15\end{cases}\)

c)Từ \(\frac{x}{4}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{6}\)

=> \(\frac{x}{8}=\frac{y}{6}=\frac{z}{11}\)

Đặt \(\frac{x}{8}=\frac{y}{6}=\frac{z}{11}\) = k

=> \(\begin{cases}x=8k\\y=6k\\z=11k\end{cases}\)

=> x.y.z = -528 => 8k.6k.11k = -528 => 528k3 = -528

=> k3 = -1 => k = -1

=> \(\begin{cases}x=-8\\y=-6\\z=-11\end{cases}\)

3 tháng 10 2016

Ta có: \(\frac{x}{4}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{6}\)

=> \(\frac{x}{8}=\frac{y}{6}=\frac{z}{11}\)

Đặt k = \(\frac{x}{8}=\frac{y}{6}=\frac{z}{11}\) 

=> \(\begin{cases}x=8k\\y=6k\\z=11k\end{cases}\)

Mà x.y.z = -528 => 8k.6k.11k = 528k3 = -528

=> k3 = -1 

=> k =-1

=> \(\begin{cases}x=-8\\y=-6\\z=-11\end{cases}\)

3 tháng 10 2016

Hình như bài này làm rồi :v

24 tháng 7 2019

1)

a) Ta có: \(\frac{x}{y}=\frac{7}{13}\).

=> \(\frac{x}{7}=\frac{y}{13}\)\(x+y=60.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x}{7}=\frac{y}{13}=\frac{x+y}{7+13}=\frac{60}{20}=3.\)

\(\left\{{}\begin{matrix}\frac{x}{7}=3=>x=3.7=21\\\frac{y}{13}=3=>y=3.13=39\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(21;39\right).\)

c) Ta có: \(\frac{x}{y}=\frac{9}{10}.\)

=> \(\frac{x}{9}=\frac{y}{10}\)\(y-x=120.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x}{9}=\frac{y}{10}=\frac{y-x}{10-9}=\frac{120}{1}=120.\)

\(\left\{{}\begin{matrix}\frac{x}{9}=120=>x=120.9=1080\\\frac{y}{10}=120=>y=120.10=1200\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(1080;1200\right).\)

d) Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}.\)

=> \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)\(x+y+z=81.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{81}{9}=9.\)

\(\left\{{}\begin{matrix}\frac{x}{2}=9=>x=9.2=18\\\frac{y}{3}=9=>y=9.3=27\\\frac{z}{4}=9=>z=9.4=36\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(18;27;36\right).\)

Mình chỉ làm 3 câu thôi nhé, dài quá bạn.

Chúc bạn học tốt!

13 tháng 9 2017

a, \(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\Rightarrow\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)

=> x=8,y=6,z=18

b, \(\hept{\begin{cases}\frac{x}{y}=\frac{9}{7}\Rightarrow\frac{x}{9}=\frac{y}{7}\\\frac{y}{z}=\frac{7}{3}\Rightarrow\frac{y}{7}=\frac{z}{3}\end{cases}\Rightarrow\frac{x}{9}=\frac{y}{7}=\frac{z}{3}=\frac{x-y+z}{9-7+3}=\frac{-15}{5}=-3}\)

=> x=-27,y=-21,z=-9

c, \(\frac{6x}{11}=\frac{9y}{2}=\frac{18z}{5}\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\Rightarrow\frac{x}{33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)

=> x=165,y=20,z=25

18 tháng 11 2018

\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\)

\(\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)

\(\Rightarrow x=165;y=20;z=25\)

3 tháng 10 2016

\(\frac{x}{y}=\frac{8}{11};\frac{z}{y}=\frac{3}{11}\Rightarrow\frac{x}{8}=\frac{y}{11};\frac{y}{11}=\frac{z}{3}\Rightarrow\frac{x}{8}=\frac{y}{11}=\frac{z}{3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:

\(\frac{x}{8}=\frac{y}{11}=\frac{z}{3}=\frac{x+y-z}{8+11-3}=\frac{80}{16}=5\)

\(\Rightarrow x=5.8=40\)

\(\Rightarrow y=5.11=55\)

Vậy x = 40 ; y = 55

6 tháng 8 2016

a) Aps dụng tính chất các dãy tỉ số bằng nhau, ta có:

x/4  =y/3 = z/9 = 3y/9 = 4z/36 = (x-3y+4z)/(4-9+36)= 62/31 = 2

=> x=2.4=8

     y=2.3=6

     z=2.9=18

6 tháng 8 2016

a) \(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\)

ADTCCDTSBN, ta có: 

\(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)

\(\Rightarrow x=2.4=8\)

\(y=2.3=6\)

\(z=2.9=18\)

b) Đề có nhầm lẫn j k nhỉ =.=

c) \(5x=8y=20z\Leftrightarrow\frac{x}{\frac{1}{5}}=\frac{y}{\frac{1}{8}}=\frac{z}{\frac{1}{20}}\)

ADTCCDTSBN, ta có:

\(\frac{x}{\frac{1}{5}}=\frac{y}{\frac{1}{8}}=\frac{z}{\frac{1}{20}}=\frac{x+y+z}{\frac{1}{5}+\frac{1}{8}+\frac{1}{20}}=-\frac{15}{\frac{3}{8}}=-40\)

\(\Rightarrow x=-40:5=-8\)

\(y=-40:8=-5\)

\(z=-40:20=-2\)

12 tháng 10 2016

\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\\ \frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)

Từ (1);(2) Suy ra \(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất dãy tĩ số bằng nhau:

\(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}=\frac{2x}{18}=\frac{3y}{36}=\frac{z}{15}=\frac{2x-3y+z}{18-36+15}=\frac{6}{-3}=-2\)

Suy ra

x = (-2) . 9 = -18

y = (-2) . 12 = -24

z = (-2) . 15 = -30

 

12 tháng 10 2016

Áp dụng tính chất dãy tỷ số bằng nhau ta có:

\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

Suy ra 

x = 2 . 10 = 20

y = 2 . 6 = 12

z = 2 . 21 = 42

 

31 tháng 8 2021

a, \(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)

Theo tính chất dãy tỉ số bằng nhau 

\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\Rightarrow x=27;y=36;z=60\)

b, \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)

Theo tính chất dãy tỉ số bằng nhau 

\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)

\(\Rightarrow x=18;y=24;z=30\)

31 tháng 8 2021

c, \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-4}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}\)

Theo tính chất dãy tỉ số bằng nhau 

\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}=\frac{2x+3y-z-2-6+4}{4+9-4}=\frac{46}{9}\)

\(\Rightarrow x=\frac{101}{9};y=\frac{52}{3};z=\frac{220}{9}\)

d, Đặt \(x=2k;y=3k;z=5k\Rightarrow xyz=810\Rightarrow30k^3=810\)

\(\Leftrightarrow k^3=27\Leftrightarrow k=3\)Với k = 3 thì \(x=6;y=9;z=15\)