K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2018

x^2+2xy+y^2+y^2-2yz+z^2+y^2+4y+4+6-2x=0

(x+y)^2+(y-z)^2+(y+2)^2+2*(3-x)=0

y+2=0=>y=-2

y-z=0=>z=-2 

x+y=0=>x=2

19 tháng 7 2018

<=>(x2+2xy+y2)+(y2-2yz+z2)+(y2+6y+9)-(2x+2y)+1=0

<=>[(x+y)2-2(x+y)+1]+(y-z)2+(y+3)2=0

<=>(x+y-1)2+(y-z)2+(y+3)2=0

Vì \(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\\\left(y-z\right)^2\ge0\\\left(y+3\right)^2\ge0\end{cases}\Rightarrow\left(x+y-1\right)^2+\left(y-z\right)^2+\left(y+3\right)^2\ge0}\)

\(\Rightarrow\hept{\begin{cases}x+y-1=0\\y-z=0\\y+3=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=1\\y-z=0\\y=-3\end{cases}}\Rightarrow\hept{\begin{cases}x=4\\z=-3\\y=-3\end{cases}}}\)

Vậy x=4,y=z=-3

10 tháng 3 2017

Bài 1:

\(x^2+y^2+z^2=xy+3y+2z-4\)

\(\Leftrightarrow4x^2+4y^2+4z^2=4xy+12y+8z-16\)

\(\Leftrightarrow4x^2+4y^2+4z^2-4xy-12y-8z+16=0\)

\(\Leftrightarrow\left(4x^2-4xy+y^2\right)+\left(3y^2-12y+12\right)+\left(4z^2-8z+4\right)=0\)

\(\Leftrightarrow\left(2x-y\right)^2+3\left(y-2\right)^2+4\left(z-1\right)^2=0\)

Xảy ra khi \(\left\{{}\begin{matrix}2x-y=0\\y-2=0\\z-1=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=z=1\\y=2\end{matrix}\right.\)

Khi đó \(x+y+z=1+1+2=4\)

Bài 2:

\(x^2-2y^2=5\)

Từ pt đầu ta có \(x\) phải là số lẻ. Thay \(x=2k+1\left(k\in Z\right)\) vào pt đầu ta được:

\(\left(2k+1\right)^2-2y^2=5\)

\(\Rightarrow4k^2+4k+1-2y^2=5\)

\(\Rightarrow4k^2+4k-4=2y^2\)

\(\Rightarrow4\left(k^2+k-1\right)=2y^2\)

\(\Rightarrow2\left(k^2+k-1\right)=y^2\). Đặt \(y=2t\left(t\in Z\right)\), ta có:

\(2\left(k^2+k-1\right)=4t^2\)

\(\Leftrightarrow k\left(k+1\right)=2t^2+1\)

Dễ thấy: \(VT\) là số chẵn \(\forall x\in Z\) còn \(VP\) là số lẻ \(\forall t\in Z\)

Suy ra pt vô nghiệm. Số nghiệm nguyên dương là \(0\)

Bài 3:

\(x^2+y^2+2x+1=0\)

\(\Leftrightarrow\left(x^2+2x+1\right)+y^2=0\)

\(\Leftrightarrow\left(x+1\right)^2+y^2=0\)

Xảy ra khi \(\left\{{}\begin{matrix}x+1=0\\y=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=0\end{matrix}\right.\)

10 tháng 3 2017

1 . Ta có :

\(x^2+y^2+z^2=xy+3y+2z-4\)

\(\Leftrightarrow4x^2+4y^2+4z^2=4xy+12y+8z-16\)

\(\Leftrightarrow4x^2+4y^2+4z^2-4xy-12y-8z+16=0\)

\(\Leftrightarrow\left(4x^2-4xy+y^2\right)+3\left(y^2-4y+4\right)+4\left(z^2-2z+1\right)=0\)

\(\Leftrightarrow\left(2x-y\right)^2+3\left(y-2\right)^2+4\left(z-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-y=0\\y-2=0\\z-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=z=1\\y=2\end{matrix}\right.\)

Vậy x+y+z = 1 + 2 + 1 = 4

15 tháng 7 2018

.

giúp mk đi. Mk đag cần gấp

8 tháng 7 2017

Ta có : x2 + 4y2 - 2x + 4y + 2 = 0

<=> (x2 - 2x + 1) + (4y2 + 4y + 1) = 0

<=> (x - 1)2 + (2x + 1)2 = 0

Mà : \(\left(x-1\right)^2\ge0\forall x\)

        \(\left(2x+1\right)^2\ge0\forall x\)

Nên \(\orbr{\begin{cases}x-1=0\\2x+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\2x=-1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{1}{2}\end{cases}}\)

11 tháng 7 2019

M=x3+x2y−2x2−xy−y2+3y+x−1

=(x3+x2y−2x2)−(xy+y2−2y)+y+x−1

=x2(x+y−2)−y(x+y−2)+(y+x−2)+1

=x2.0−y.0+0+1

=1

N=x3−2x2−xy2+2xy+2y−2x−2

=(x3−2x2+x2y)−(x2y+xy2−2xy)+2y+2x−4−4x+2

=x2(x−2+y)−xy(x+y−2)+2(y+x−2)−4x+2

=x2.0−xy.0+2.0−4x+2

=2−4x