![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
x^2+2xy+y^2+y^2-2yz+z^2+y^2+4y+4+6-2x=0
(x+y)^2+(y-z)^2+(y+2)^2+2*(3-x)=0
y+2=0=>y=-2
y-z=0=>z=-2
x+y=0=>x=2
<=>(x2+2xy+y2)+(y2-2yz+z2)+(y2+6y+9)-(2x+2y)+1=0
<=>[(x+y)2-2(x+y)+1]+(y-z)2+(y+3)2=0
<=>(x+y-1)2+(y-z)2+(y+3)2=0
Vì \(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\\\left(y-z\right)^2\ge0\\\left(y+3\right)^2\ge0\end{cases}\Rightarrow\left(x+y-1\right)^2+\left(y-z\right)^2+\left(y+3\right)^2\ge0}\)
\(\Rightarrow\hept{\begin{cases}x+y-1=0\\y-z=0\\y+3=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=1\\y-z=0\\y=-3\end{cases}}\Rightarrow\hept{\begin{cases}x=4\\z=-3\\y=-3\end{cases}}}\)
Vậy x=4,y=z=-3
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
\(x^2+y^2+z^2=xy+3y+2z-4\)
\(\Leftrightarrow4x^2+4y^2+4z^2=4xy+12y+8z-16\)
\(\Leftrightarrow4x^2+4y^2+4z^2-4xy-12y-8z+16=0\)
\(\Leftrightarrow\left(4x^2-4xy+y^2\right)+\left(3y^2-12y+12\right)+\left(4z^2-8z+4\right)=0\)
\(\Leftrightarrow\left(2x-y\right)^2+3\left(y-2\right)^2+4\left(z-1\right)^2=0\)
Xảy ra khi \(\left\{{}\begin{matrix}2x-y=0\\y-2=0\\z-1=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=z=1\\y=2\end{matrix}\right.\)
Khi đó \(x+y+z=1+1+2=4\)
Bài 2:
\(x^2-2y^2=5\)
Từ pt đầu ta có \(x\) phải là số lẻ. Thay \(x=2k+1\left(k\in Z\right)\) vào pt đầu ta được:
\(\left(2k+1\right)^2-2y^2=5\)
\(\Rightarrow4k^2+4k+1-2y^2=5\)
\(\Rightarrow4k^2+4k-4=2y^2\)
\(\Rightarrow4\left(k^2+k-1\right)=2y^2\)
\(\Rightarrow2\left(k^2+k-1\right)=y^2\). Đặt \(y=2t\left(t\in Z\right)\), ta có:
\(2\left(k^2+k-1\right)=4t^2\)
\(\Leftrightarrow k\left(k+1\right)=2t^2+1\)
Dễ thấy: \(VT\) là số chẵn \(\forall x\in Z\) còn \(VP\) là số lẻ \(\forall t\in Z\)
Suy ra pt vô nghiệm. Số nghiệm nguyên dương là \(0\)
Bài 3:
\(x^2+y^2+2x+1=0\)
\(\Leftrightarrow\left(x^2+2x+1\right)+y^2=0\)
\(\Leftrightarrow\left(x+1\right)^2+y^2=0\)
Xảy ra khi \(\left\{{}\begin{matrix}x+1=0\\y=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=0\end{matrix}\right.\)
1 . Ta có :
\(x^2+y^2+z^2=xy+3y+2z-4\)
\(\Leftrightarrow4x^2+4y^2+4z^2=4xy+12y+8z-16\)
\(\Leftrightarrow4x^2+4y^2+4z^2-4xy-12y-8z+16=0\)
\(\Leftrightarrow\left(4x^2-4xy+y^2\right)+3\left(y^2-4y+4\right)+4\left(z^2-2z+1\right)=0\)
\(\Leftrightarrow\left(2x-y\right)^2+3\left(y-2\right)^2+4\left(z-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-y=0\\y-2=0\\z-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=z=1\\y=2\end{matrix}\right.\)
Vậy x+y+z = 1 + 2 + 1 = 4
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : x2 + 4y2 - 2x + 4y + 2 = 0
<=> (x2 - 2x + 1) + (4y2 + 4y + 1) = 0
<=> (x - 1)2 + (2x + 1)2 = 0
Mà : \(\left(x-1\right)^2\ge0\forall x\)
\(\left(2x+1\right)^2\ge0\forall x\)
Nên \(\orbr{\begin{cases}x-1=0\\2x+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\2x=-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{1}{2}\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
M=x3+x2y−2x2−xy−y2+3y+x−1
=(x3+x2y−2x2)−(xy+y2−2y)+y+x−1
=x2(x+y−2)−y(x+y−2)+(y+x−2)+1
=x2.0−y.0+0+1
=1
N=x3−2x2−xy2+2xy+2y−2x−2
=(x3−2x2+x2y)−(x2y+xy2−2xy)+2y+2x−4−4x+2
=x2(x−2+y)−xy(x+y−2)+2(y+x−2)−4x+2
=x2.0−xy.0+2.0−4x+2
=2−4x