Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) \(xy+3x-2y=11\)
\(xy+3x-2y-6=11-6\)
\(xy+3x-2y-6=5\)
\(\left(xy+3x\right)-\left(2y+6\right)=5\)
\(x\left(y+3\right)-2\left(y+3\right)=5\)
\(\left(x-2\right)\left(y+3\right)=5\)
\(\Rightarrow5=\left(-1\right)\left(-5\right)=1\cdot5\)
Bạn tự lập bảng mà thử nghiệm nhé
\(\frac{x}{4}=\frac{y}{3}\)
\(\Rightarrow\frac{x+y}{4+3}=\frac{x}{4}=\frac{y}{3}\) mà x + y = 14
\(\Rightarrow\frac{14}{7}=\frac{x}{4}=\frac{y}{3}\)
\(\Rightarrow2=\frac{x}{4}=\frac{y}{3}\)
\(\Rightarrow\hept{\begin{cases}x=2\cdot4=8\\y=2\cdot3=6\end{cases}}\)
\(\frac{x}{4}=\frac{y}{3}\) và x + y = 14
Theo tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{4}=\frac{y}{3}=\frac{x+y}{4+3}=\frac{14}{7}=2\)
=> \(\orbr{\begin{cases}\frac{x}{4}=2\\\frac{y}{3}=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=8\\y=6\end{cases}}\)
\(\frac{x-3}{y-2}=\frac{3}{2}\) và x - y = 4
Ta có : \(\frac{x-3}{y-2}=\frac{3}{2}\)
\(\Leftrightarrow2\left(x-3\right)=3\left(y-2\right)\)
\(\Leftrightarrow2x-6=3y-6\)
\(\Leftrightarrow2x-6-3y=-6\)
\(\Leftrightarrow2x-3y-6=-6\)
\(\Leftrightarrow2x-3y=0\)
\(\Leftrightarrow2x=3y\)
\(\Leftrightarrow\frac{x}{3}=\frac{y}{2}\)
Mà x - y = 4
Theo tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{2}=\frac{x-y}{3-2}=\frac{4}{1}=4\)
=> \(\orbr{\begin{cases}\frac{x}{3}=4\\\frac{y}{2}=4\end{cases}}\Rightarrow\orbr{\begin{cases}x=12\\y=8\end{cases}}\)
1.
a, \(x-14=3x+18\)
\(\Rightarrow x-3x=18+14\)
\(\Rightarrow-2x=32\Rightarrow x=\frac{32}{-2}=-16\)
b, \(\left(x+7\right).\left(x-9\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+7=0\\x-9=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-7\\x=9\end{cases}}}\)
c, \(\left|2x-5\right|-7=22\)
\(\Rightarrow\left|2x-5\right|=22+7\)
\(\Rightarrow\left|2x-5\right|=29\)
\(\Rightarrow\orbr{\begin{cases}2x+5=29\\2x-5=29\end{cases}}\Rightarrow\orbr{\begin{cases}2x=24\\2x=34\end{cases}\Rightarrow}\orbr{\begin{cases}x=12\\x=17\end{cases}}\)
d, \(\left(\left|2x\right|-5\right)-7=22\)
\(\Rightarrow\left(\left|2x\right|-5\right)=29\)
\(\Rightarrow\left|2x\right|=29+5\Rightarrow\left|2x\right|=34\Rightarrow x=\pm17\)
e, \(\left|x+3\right|+\left|x+9\right|+\left|x+5\right|=4x\)
Vì \(\left|x+3\right|\ge0;\left|x+9\right|\ge0;\left|x+5\right|\ge0;4x\ge0\)
Nên \(\left|x+3\right|+\left|x+9\right|+\left|x+5\right|=4x\ge0\)
\(\Rightarrow\left|x+3\right|>0\Rightarrow\left|x+3\right|=x+3\)
\(\left|x+9\right|>0\Rightarrow\left|x+9\right|=x+9\)
\(\left|x+5\right|>0\Rightarrow\left|x+5\right|=x+5\)
Ta có :
\(x+3+x+9+x+5=4x\)
\(\Rightarrow3x+\left(3+9+5\right)=4x\)
\(\Rightarrow4x-3x=17\)
\(\Rightarrow x=17\)
2. a , b sai đề bn
c, \(\left(5x+1\right).\left(y-1\right)=4\)
\(\Rightarrow\left(5x+1\right).\left(y-1\right)\inƯ\left(4\right)\)
\(\text{ }Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Ta có bảng sau :
5x+1 | 1 | -1 | 2 | -2 | 4 | -4 |
y-1 | -4 | 4 | -2 | 2 | -1 | 1 |
x | 0 | -2/5 | 1/5 | -3/5 | 3/5 | -1 |
y | -3 | 5 | -1 | 3 | 0 | 2 |
d, \(5xy-5x+y=5\)
\(\Rightarrow\left(5xy-5x\right)+y=5\)
\(\Rightarrow5x.\left(y-1\right)+y=5\)
\(\Rightarrow\left(5x+1\right).\left(y-1\right)=4\)
\(\Rightarrow\left(5x+1\right).\left(y-1\right)\inƯ\left(4\right)\)
\(Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Ta có bảng sau :
5x+1 | 1 | -1 | 2 | -2 | 4 | -4 |
y-1 | -4 | 4 | -2 | 2 | -1 | 1 |
x | 0 | -2 | 1/5 | -3/5 | 3/5 | -1 |
y | -3 | 5 | -1 | 3 | 0 | 2 |
a) 4 x y + y + y + y = 3696
4 x ( y x 4 ) = 3696
y x 4 = 3696 : 4
y x 4 = 924
y = 924 : 4
y = 184.8
Vậy y = 184.8
a)4 . y. 4=3696
16y=3696
y=231
b)14 . y-4.y-y=1899
y.10-y=1899
9y=1899
y=211