Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề: \(2x+y=0\Leftrightarrow y=-2x\) \(\left(1\right)\)
Ta có:
\(\dfrac{3-x}{y-4}=\dfrac{2}{5}\)
\(\Leftrightarrow5\left(3-x\right)=2\left(y-4\right)\)
\(\Leftrightarrow15-5x=2y-8\)
\(\Leftrightarrow15+8=2y+5x\)
\(\Leftrightarrow5x+2y=23\) \(\left(2\right)\)
Thế (1) vào (2), suy ra:
\(5x+2.\left(-2x\right)=23\)
\(\Leftrightarrow5x-4x=23\)
\(\Leftrightarrow x=23\)
\(\Rightarrow y=-2.23=-46\)
Xy-3x=-19
=> x(y - 3) = -19
x | -1 | 1 | -19 | 19 |
y-3 | 19 | -19 | 1 | -1 |
y | 22 | -16 | 4 | 2 |
Xy+3x-2y=11
=> x(y + 3) - 2y - 6 = 5
=> x(y + 3) - 2(y + 3) = 5
=> (x - 2)(y + 3) = 5
xét bảng như câu a nha
3x+4y-xy=16
=> x(3 - y) - 12 + 4y = 4
=> x(3 - y) -4(3 - y) = 4
Xy+3x+2y=-3
=> x(y + 3) + 2y + 6 = 3
=> x(y + 3) + 2(y + 3) = 3
=> (x + 2)(y + 3) = 3
1) \(5^1+5^2+5^3+...+5^{2003}+5^{2004}=\) \(\left(5^1+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+...+\left(5^{2001}+5^{2004}\right)\)
\(=5\left(1+5^3\right)+5^2\left(1+5^3\right)+5^3\left(1+5^3\right)+...+5^{2001}\left(1+5^3\right)\)
\(=\left(1+5^3\right).\left(5+5^2+5^3+...+5^{2001}\right)\)
\(=126.\left(5+5^2+5^3+...+5^{2001}\right)⋮126\) \(\left(đpcm\right)\)