\(\frac{2}{\left(3y+7\right)^2+5}\)đạt giá trị lớn nhất. Tìm giá trị...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2016

Ta có: \(\left(3y+7\right)^2\ge0\Rightarrow\left(3y+7\right)^2+5\ge5\)

=>\(G=\frac{2}{\left(3y+7\right)^2+5}\le\frac{2}{5}\)


Dấu "=" xảy ra khi: 3y+7=0 =>y=-7/3

Vậy GTLN của G là 2/5 tại y=-7/3 

:)) 

4 tháng 4 2016

theo bài ra ta có 
n = 8a +7=31b +28 
=> (n-7)/8 = a 
b= (n-28)/31 
a - 4b = (-n +679)/248 = (-n +183)/248 + 2 
vì a ,4b nguyên nên a-4b nguyên => (-n +183)/248 nguyên 
=> -n + 183 = 248d => n = 183 - 248d (vì n >0 => d<=0 và d nguyên ) 
=> n = 183 - 248d (với d là số nguyên <=0) 
vì n có 3 chữ số lớn nhất => n<=999 => d>= -3 => d = -3 
=> n = 927

4 tháng 1 2016

a. A=1000-|x+5| < 1000

=> GTLN của A là 1000

<=> x + 5 = 0

<=> x = -5

b. B = |x-3| + 5 > 5

=> GTNN của B là 5

<=> x - 3 = 0

<=> x = 3

4 tháng 1 2016

a, x= -5

b, x= -3

a: \(A=2018-\left|10-x\right|\le2018\)

Dấu '=' xảy ra khi x=10

\(B=-\left(x+2\right)^2+1999\le1999\)

Dấu '=' xảy ra khi x=-2

b: \(A=\left(2x-8\right)^2+3>=3\)

Dấu '=' xảy ra khi x=4

\(B=\left|x^2-25\right|-2017>=-2017\)

Dấu '=' xảy ra khi x=5 hoặc x=-5

15 tháng 3 2018

mau lên nha mình đang gấp

22 tháng 3 2018

Đặt \(A=\frac{9n-4}{2n-7}=\frac{9n-\frac{63}{2}+\frac{33}{2}}{2n-7}=\frac{\frac{9}{2}\left(2n-7\right)+\frac{33}{2}}{2n-7}=\frac{9}{2}+\frac{\frac{55}{2}}{2n-7}\)

Để A có GTLN 

\(\Leftrightarrow\frac{\frac{55}{2}}{2n-7}\)có GTLN

\(\Leftrightarrow2n-7\)có GTNN, 2n-7 lớn hơn 0 và n thuộc Z

\(\Leftrightarrow2n-7=1\)

\(\Leftrightarrow2n=8\)

\(\Leftrightarrow n=4\)

Vậy, A có GTLN là 32 khi x=4

ta có |x+3|>=0;|2y-14|>=0

=>|x+3|+|2y-14|>=0

=>S>=2016

dấu "=" xảy ra khi và chỉ khi (x+3)(2y-14)=0

=>x+3=0 và 2y-14=0

x=-3 và y=7

Vậy GTNN của S=2016 khi x=-3 và y=7

30 tháng 1 2016

x=-3

y=-5

z=-1

4 tháng 3 2018

\(A=\frac{14-x}{4-x}=\frac{4-x+10}{4-x}=1+\frac{10}{4-x}\)

Để \(A\)có GTLN \(\Leftrightarrow\)4-x có GTNN, \(4-x>0\)và \(x\inℤ\)

                     \(\Rightarrow4-x=1\Rightarrow x=3\)

Vậy, A có GTLN là 11 khi x=3

                  

4 tháng 3 2018

Có \(A=\frac{14-x}{4-x}=\frac{4-x+10}{4-x}=1+\frac{10}{4-x}\)

Nếu A có GTLN \(\Rightarrow\)4-x có GTNN \(\Rightarrow\)4 - x > 0 ( x \(\inℤ\))

\(\Rightarrow\)4 - x = 1

\(\Leftrightarrow\)x = 3

Vậy A có GTLN là 11 nếu x = 3