K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: =>y+3/10y=-1,3

=>13/10y=-1,3

hay y=-1

b: =>3/4y=1/2

hay y=2/3

c: \(\Leftrightarrow y\cdot\dfrac{19}{3}+16,75=-13,25\)

\(\Leftrightarrow y\cdot\dfrac{19}{3}=-30\)

hay y=-190

Bài 2: 

a: Theo đề, ta có:

\(\left\{{}\begin{matrix}a+b+c=0\\c=5\\\dfrac{-b}{2a}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=-5\\b=-6a\\c=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-5a=-5\\b=-6a\\c=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-6\\c=5\end{matrix}\right.\)

b: Theo đề, ta có:

\(\left\{{}\begin{matrix}4a+2b+c=3\\\dfrac{-b}{2a}=3\\-\dfrac{b^2+4ac}{4a}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4a+2b+c=3\\b=-6a\\\left(-6a\right)^2+4ac=-16a\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4a-12a+c=3\\b=-6a\\36a^2+16a+4ac=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=8a+3\\b=-6a\\36a^2+16a+4a\left(8a+3\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{7}{17}\\b=6\cdot\dfrac{7}{17}=\dfrac{42}{17}\\c=8\cdot\dfrac{-7}{17}+3=-\dfrac{5}{17}\end{matrix}\right.\)

NV
7 tháng 2 2021

1.

Tọa độ A là nghiệm: \(\left\{{}\begin{matrix}x-y+2=0\\2x-3y+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-5\\y=-3\end{matrix}\right.\)

\(\Rightarrow A\left(-5;-3\right)\)

Phương trình BC qua B và vuông góc đường cao kẻ từ A có dạng:

\(1\left(x-2\right)+1\left(y-1\right)=0\Leftrightarrow x+y-3=0\)

Gọi M là trung điểm BC thì tọa độ M thỏa mãn:

\(\left\{{}\begin{matrix}2x-3y+1=0\\x+y-3=0\end{matrix}\right.\) \(\Rightarrow M\left(\dfrac{8}{5};\dfrac{7}{5}\right)\)

M là trung điểm BC \(\Rightarrow C\left(\dfrac{6}{5};\dfrac{9}{5}\right)\)

2.

Do C thuộc AC nên tọa độ có dạng: \(C\left(c;2c+3\right)\)

Gọi M là trung điểm BC \(\Rightarrow M\left(\dfrac{c+4}{2};\dfrac{2c+5}{2}\right)\)

M thuộc trung tuyến kẻ từ A nên:

\(\dfrac{c+4}{2}+\dfrac{2c+5}{2}-1=0\Leftrightarrow c=-\dfrac{7}{3}\)

\(\Rightarrow C\left(-\dfrac{7}{3};-\dfrac{5}{3}\right)\)

20 tháng 7 2016

a)Vì \(x:y:z=2:3:\left(-4\right)\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{-4}\)

          Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{-4}=\frac{x-y+z}{2-3+-4}=\frac{-125}{-5}=25\)

\(\Rightarrow\begin{cases}\frac{x}{2}=25\\\frac{y}{3}=25\\\frac{z}{-4}=25\end{cases}\)\(\Rightarrow\)\(\begin{cases}x=50\\y=75\\z=-100\end{cases}\)

Vậy x=50;y=75;z=-100

d)Vì 2x=3y\(\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)(1)

       5y=7z\(\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\)(2)

                       Từ (1) và (2) suy ra:\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)

Áp dụng dãy tỉ số bằng nhau ta có:

      \(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}=\frac{30}{15}=2\)

\(\Rightarrow\begin{cases}\frac{x}{21}=2\\\frac{y}{14}=2\\\frac{z}{10}=2\end{cases}\)\(\Rightarrow\)\(\begin{cases}x=42\\y=28\\z=20\end{cases}\)

 

20 tháng 7 2016

giúp b, c với ạ

8 tháng 10 2020

a, Trừ vế theo vế hai phương trình ta được

\(x^2+6y-y^2-6x=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=6-y\end{matrix}\right.\)

Nếu \(x=y,pt\left(1\right)\Leftrightarrow x^2+x=5x+3\)

\(\Leftrightarrow x^2-4x-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y=2+\sqrt{7}\\x=y=2-\sqrt{7}\end{matrix}\right.\)

Nếu \(x=6-y,pt\left(2\right)\Leftrightarrow y^2+6-y=5y+3\)

\(\Leftrightarrow y^2-6y+3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=3+\sqrt{6}\\y=3-\sqrt{6}\end{matrix}\right.\)

\(y=3+\sqrt{6}\Rightarrow x=3-\sqrt{6}\)

\(y=3-\sqrt{6}\Rightarrow x=3+\sqrt{6}\)

8 tháng 10 2020

b, Trừ vế theo vế hai phương trình

\(3x^3-3y^3=y^2-x^2\)

\(\Leftrightarrow3\left(x-y\right)\left(x^2+xy+y^2+x+y\right)=0\)

Từ \(pt\left(1\right)\) \(3x^3=y^2+2>0\Rightarrow x>0\)

Tương tự \(y>0\)

\(\Rightarrow x^2+xy+y^2+x+y>0,\forall x;y\)

\(\Rightarrow x=y\)

\(pt\left(1\right)\Leftrightarrow3x^3=x^2+2\)

\(\Leftrightarrow3x^3-x^2-2=0\)

\(\Leftrightarrow\left(x-1\right)\left(3x^2+2x+2\right)=0\)

\(\Leftrightarrow x=y=1\left(\text{vì }3x^2+2x+2=2x^2+\left(x+1\right)^2+1>0\right)\)

31 tháng 10 2021

\(\left\{{}\begin{matrix}a\cdot\left(-1\right)^2+b\cdot\left(-1\right)+c=0\\-\dfrac{b}{2a}=1\\-\dfrac{b^2-4ac}{4a}=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-b+c=0\\b=-2a\\b^2-4ac=16a\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b+c=0\\b=-2a\\4a^2-4ac=16a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-b+c=0\\b=-2a\\a-c=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b+c=0\\b=-2a\\c=a-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+2a+a-4=0\\b=-2a\\c=a-4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-2\\c=-3\end{matrix}\right.\)