K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Leftrightarrow99y+y\cdot y=12400\)

\(\Leftrightarrow y^2+99y-12400=0\)

\(\text{Δ}=99^2-4\cdot1\cdot\left(-12400\right)=59401\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}y_1=\dfrac{-99-\sqrt{59401}}{2}\\y_2=\dfrac{-99+\sqrt{59401}}{2}\end{matrix}\right.\)

25 tháng 6 2018

Giải:

Ta có:

\(\left(x+y\right)\left(x+z\right)=15\); \(\left(y+z\right)\left(y+x\right)=18\); \(\left(z+x\right)\left(z+y\right)=30\)

\(\Leftrightarrow\left(x+y\right)^2\left(y+z\right)^2\left(z+x\right)^2=15.18.30\)

\(\Leftrightarrow\left(\left(x+y\right)\left(y+z\right)\left(z+x\right)\right)^2=8100\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=90\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=\dfrac{90}{30}=3\\y+z=\dfrac{90}{15}=6\\z+x=\dfrac{90}{18}=5\end{matrix}\right.\)

\(\Leftrightarrow2\left(x+y+z\right)=3+6+5=14\)

\(\Leftrightarrow x+y+z=7\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=7-6=1\\y=7-5=2\\z=7-3=4\end{matrix}\right.\)

Vậy ...

25 tháng 6 2018

Ta có:

\(\left\{{}\begin{matrix}\left(x+y\right)\left(z+x\right)=15\\\left(x+y\right)\left(y+z\right)=18\\\left(y+z\right)\left(z+x\right)=30\end{matrix}\right.\)

\(\Leftrightarrow\left[\left(x+y\right)\left(y+z\right)\left(z+x\right)\right]^2=8100\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=90\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=3\\y+z=6\\z+x=5\end{matrix}\right.\)

\(\Leftrightarrow2\left(x+y+z\right)=14\)

\(\Leftrightarrow x+y+z=7\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\\z=4\end{matrix}\right.\)

5 tháng 10 2021

a) \(\left(3x-5\right)\left(5-3x\right)+9\left(x+1\right)^2=30\)

\(\Rightarrow15x-9x^2-25+15x+9\left(x^2+2x+1\right)-30=0\)

\(\Rightarrow30x-9x^2-25+9x^2+18x+9-30=0\)

\(\Rightarrow48x-46=0\)

\(\Rightarrow x=\frac{23}{24}\)

b) \(\left(x+4\right)^2-\left(x+1\right)\left(x-1\right)=16\)

\(\Rightarrow\left(x^2+8x+16\right)-\left(x^2-1\right)=16\)

\(\Rightarrow x^2+8x+16-x^2+1=16\)

\(\Rightarrow8x+17=16\)

\(\Rightarrow8x=-1\)

\(\Rightarrow x=\frac{-1}{8}\)

5 tháng 10 2021

c) \(\left(y-2\right)^3-\left(y-3\right)\left(y^2+3y+9\right)+6\left(y+1\right)^2=49\)

\(\Rightarrow\left(y-2\right)^3-\left(y^3-3^3\right)+6\left(y^2+2y+1\right)=49\)

\(\Rightarrow y^3-6y^2+12y-8-y^3+27+6y^2+12y+6=49\)

\(\Rightarrow\left(y^3-y^3\right)+\left(-6y^2+6y^2\right)+\left(12y+12y\right)+\left(-8+27+6\right)=49\)

\(\Rightarrow24y+25=49\)

\(\Rightarrow24y=24\)

\(\Rightarrow y=1\)

d) \(\left(y+3\right)^3-\left(y+1\right)^3=56\)

\(\Rightarrow\left(y+3-y-1\right)[\left(y+3\right)^2+\left(y+3\right)\left(y+1\right)+\left(y+1\right)^2]=56\)

\(\Rightarrow2\left(y^2+6y+9+y^2+4y+3+y^2+2y+1\right)=56\)

\(\Rightarrow3y^2+12y+13=28\)

\(\Rightarrow\left(3y^2+15y\right)-\left(3y+15\right)=0\)

\(\Rightarrow3y\left(y+5\right)-3\left(y+5\right)=0\)

\(\Rightarrow3\left(y-1\right)\left(y+5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-1=0\\x+5=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-5\end{cases}}\)

4 tháng 4 2022

bn có giải đc ko?

4 tháng 4 2022

d. Áp dụng BĐT Caushy Schwartz ta có:

\(x+y+\dfrac{1}{x}+\dfrac{1}{y}\le x+y+\dfrac{\left(1+1\right)^2}{x+y}=x+y+\dfrac{4}{x+y}\le1+\dfrac{4}{1}=5\)

-Dấu bằng xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)

13 tháng 4 2020

jkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkjk/

18 tháng 4 2020

78r63649jfrc,idkhgyiu0-rpuv,m089bnoigomxkgkjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjiiiiiiiiiiiiiiiiiiiiiiiiiiiiiijjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

23 tháng 9 2021

\(a,\Leftrightarrow y^3-6y^2+12y-8-y^3+27+6y^2+12y+6=49\\ \Leftrightarrow24y=24\Leftrightarrow y=1\\ b,\Leftrightarrow y^3+9y^2+27y+27-y^3-3y^2-3y-1=56\\ \Leftrightarrow6y^2+24y-30=0\\ \Leftrightarrow y^2+4y-5=0\\ \Leftrightarrow\left(y-1\right)\left(y+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}y=1\\y=-5\end{matrix}\right.\)

23 tháng 9 2021

a) \(\Leftrightarrow y^3-6y^2+12y-8-y^3+27+6y^2+12y+6=49\)

\(\Leftrightarrow24y=24\Leftrightarrow y=1\)

b) \(\Leftrightarrow y^3+9y^2+27y+27-y^3-3y^2-3y-1=56\)

\(\Leftrightarrow6y^2+24y-30=0\)

\(\Leftrightarrow6\left(y-1\right)\left(y+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=1\\y=-5\end{matrix}\right.\)