Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 ) Ta có :
b - a = 1 => b và a là hai số nguyên liên tiếp
MÀ hai số nguyên liên tiếp có tích bằng 72 chỉ có thể là : 8 và 9 ; ( - 8 ) và ( - 9 )
Ta thử các giá trị a , b ra ( a , b ) = ( 8 , 9 ) ; ( - 9 ; - 8 )
Vậy ( a , b ) = ( 8 , 9 ) ; ( - 9 ; - 8 )
2 ) \(\frac{1}{2.y}\)= \(\frac{x}{3}-\frac{1}{6}\)
\(\frac{1}{2y}\)= \(\frac{2x-1}{6}\)
=> ( 2x - 1 ) 2y = 6 mà x,y thuộc Z
=> 2x - 1 , 2y thuộc Ư ( 6 ) = { - 6 ; - 3 ; - 2 ; - 1 ; 1 ; 2 ; 3 ; 6 }
Lập bảng giá trị tương ứng giá trị của x , y :
2x - 1 | - 6 | - 3 | - 2 | - 1 | 1 | 2 | 3 | 6 |
x | / | - 1 | / | 0 | 1 | / | 2 | / |
2y | - 1 | - 2 | - 3 | - 6 | 6 | 3 | 2 | 1 |
y | / | - 1 | / | - 3 | 3 | / | 1 | / |
a; 3:\(\frac{2x}{5}\)= 1:0.001
3:\(\frac{2x}{5}\)=1000
\(\frac{2x}{5}\)=1000:3
\(\frac{2x}{5}\)=0.003
2x=0.003.5
2x=0.015
x=0.015:2
x=7.5
Bài 1:
a, \(\frac{1}{-16}-\frac{3}{45}=\frac{-1}{16}-\frac{1}{15}\)
\(=\frac{-15}{240}-\frac{16}{240}\)
\(=\frac{-31}{240}\)
b, \(=\frac{-10}{12}-\frac{-12}{12}\)
\(=\frac{2}{12}=\frac{1}{6}\)
c, \(=\frac{-30}{6}-\frac{1}{6}\)
\(=\frac{-31}{6}\)
Bài 2:
a, \(x=-\frac{1}{2}-\frac{3}{4}\)
\(x=-\frac{1}{4}\)
b, \(\frac{1}{2}+x=-\frac{11}{2}\)
\(x=-\frac{11}{2}-\frac{1}{2}\)
\(x=-6\)
Bạn nhớ k đúng và chọn câu trả lời này nhé!!!! Mình giải đúng và chính xác hết ^_^
\(\frac{x-1}{3}+\frac{1}{y}=\frac{-1}{6}\)
\(\frac{\left(x-1\right)y}{3y}+\frac{3}{3y}=\frac{-1}{6}\)
\(\frac{\left(x-1\right)y+3}{3y}=\frac{-1}{6}\)
\(\frac{\left(x-1\right)y}{y}=\frac{\left(-1\right)-3}{6:3}\)
\(x-1=-2\)
\(x=\left(-2\right)+1\)
\(x=-1\)
\(\frac{x-1}{3}+\frac{1}{y}=\frac{-1}{6}\)
\(\frac{\left(x-1\right)y}{3y}+\frac{3}{3y}=\frac{-1}{6}\)
\(\frac{\left(x-1\right)y+3}{3y}=\frac{-1}{6}\)
\(x-1=\frac{\left(-1\right)-3}{6:3}\)
\(x-1=-2\)
\(x=\left(-2\right)+1\)
\(x=-1\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left[x+1\right]}=\frac{2007}{2009}\)
\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left[x+1\right]}=\frac{2007}{2009}\)
\(2\left[\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\left[x+1\right]}\right]=\frac{2007}{2009}\)
\(2\left[\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right]=\frac{2007}{2009}\)
\(2\left[\frac{1}{2}-\frac{1}{x+1}\right]=\frac{2007}{2009}\)
\(1-\frac{2}{x+1}=\frac{2007}{2009}\)
\(\frac{2}{x+1}=1-\frac{2007}{2009}\)
\(\frac{2}{x+1}=\frac{2}{2009}\)
\(\Rightarrow x+1=2009\Leftrightarrow x=2008\)
a) x(y-3)-2(y-3)=1+6
(x-2)(y-3)=7
Ta có bảng sau:
x-2 | 1 | 7 | -1 | -7 |
y-3 | 7 | 1 | -7 | -1 |
x | 3 | 9 | 1 | -5 |
y | 10 | 4 | -4 | 2 |
b)6y(x/3-4/y)=1/6 .6y
2xy -24 =y
2xy-y=24
y(2x-1)=24
Mà 2x-1 lẻ
TA có bảng sau
y | 24 | 8 | -24 | -8 |
2x-1 | 1 | 3 | -1 | -3 |
x | 1 | 2 | 0 | -1 |
c)
Ta thấy 5^y là lẻ , 624 chẵn => 2^x lẻ =>x=0
5^y=625
=>y=4
(1/1×2 + 1/2×3 + ... + 1/9×10) × x < 2/1×3 + 2/3×5 + ... + 2/9×11
(1 - 1/2 + 1/2 - 1/3 + ... + 1/9 - 1/10) × x < 1 - 1/3 + 1/3 - 1/5 + ... + 1/9 - 1/11
(1 - 1/10) × x < 1 - 1/11
9/10 × x < 10/11
x < 10/11 : 9/10
x < 10/11 × 10/9
x < 100/99
Mà x là số tự nhiên => x = 0 hoặc 1
Mình nghĩ \(x,y\inℕ\)mới làm được bài toán nhé
ĐK:\(x\ne0\)
\(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\)
\(\Leftrightarrow\frac{30}{6x}-\frac{2xy}{6x}=\frac{x}{6x}\)
\(\Rightarrow30-2xy=x\)
\(x+2xy=30\)
\(\Leftrightarrow x\left(2y+1\right)=30\)
Vì \(y\inℕ\Rightarrow\hept{\begin{cases}2y+1\inƯ\left(30\right)\\2y+1⋮̸2\end{cases}}\)
\(\Rightarrow2y+1\in\left\{3;5\right\}\)
\(\Rightarrow y\in\left\{1;2\right\}\)
Với y=2 thì x=6
Với y=1 thì x = 10