K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2021

Ta có : x2 + 4y2 + z2 - 4x+ 4y - 8z + 21 = 0

\(\Leftrightarrow\left(x^2-4x+4\right)+\left(4y^2+4y+1\right)+\left(z^2-8z+16\right)=0\)

\(\Leftrightarrow\left(x-2\right)^2+\left(2y+1\right)^2+\left(z-4\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-2=0\\2y+1=0\\z-4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=-\frac{1}{2}\\z=4\end{cases}}\)

Vậy x = 2 ; y = - 1/2 ; z = 4

29 tháng 8 2016

VT= x2+4y2+z2-4x+4y-8z+32

= (x2-4x+4)+(4y2+4y+1)+(z2-8z+16)+11

= (x-2)2+(2y+1)2+(z-4)2+11>0

Vậy không có x,y,x thoã mã đẳng thức

8 tháng 7 2017

Ta có : x2 + 4y2 - 2x + 4y + 2 = 0

<=> (x2 - 2x + 1) + (4y2 + 4y + 1) = 0

<=> (x - 1)2 + (2x + 1)2 = 0

Mà : \(\left(x-1\right)^2\ge0\forall x\)

        \(\left(2x+1\right)^2\ge0\forall x\)

Nên \(\orbr{\begin{cases}x-1=0\\2x+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\2x=-1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{1}{2}\end{cases}}\)

5 tháng 8 2015

 

x2+4y2-2x+4y+2=0

<=>x2-2x+1+4y2+4y+1=0

<=>(x-1)2+(2y+1)2=0

<=>x-1=0 và 2y+1=0

<=>x=1 và y=-1/2

 

2 tháng 10 2017

x2+x+1=x2+2.x.\(\frac{1}{2}\)+\(\frac{1}{4}+\frac{3}{4}\)=(x+\(\frac{1}{2}\))2\(+\frac{3}{4}\)lớn hơn 0 vớimọi x

2 tháng 10 2017

a) x2 + x + 1

= (x2 + x) + 1

=x(x+1) +1

=(x + 1)(x+1)

=(x+1)>0

14 tháng 7 2019

\(4x^2+4xy+2y^2-4x-4y+2=0\)

\(\Rightarrow4x^2+4xy+y^2-4x-2y+1+y^2-2y+1=0\)

\(\Rightarrow\left(2x+1\right)^2-2\left(2x+1\right)+1+\left(y-1\right)^2=0\)

\(\Rightarrow\left(2x+1-1\right)^2+\left(y-1\right)^2=0\)

\(\Rightarrow4x^2+\left(y-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}4x^2=0\\\left(y-1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=1\end{cases}}}\)