Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x}{12}=\dfrac{2y}{5}=\dfrac{3z}{10}\)
\(\Leftrightarrow\dfrac{x}{72}=\dfrac{2y}{30}=\dfrac{3z}{60}\)
\(\Leftrightarrow\dfrac{x}{72}=\dfrac{y}{15}=\dfrac{z}{20}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{72}=\dfrac{y}{15}=\dfrac{z}{20}=\dfrac{x-y-z}{72-15-20}=\dfrac{74}{37}=2\)
Do đó: x=144; y=30; z=60
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{12}=\dfrac{y}{\dfrac{5}{2}}=\dfrac{z}{\dfrac{10}{3}}=\dfrac{x-y-z}{12-\dfrac{5}{2}-\dfrac{10}{3}}=\dfrac{74}{\dfrac{37}{6}}=12\)
Do đó: x=144; y=30; z=40
d) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2y-4}{6}=\frac{3z-9}{12}\)
\(=\frac{x-1-2y+4+3z-9}{2-6+12}=\frac{x-2y+3z-6}{8}\)
\(=\frac{-10-6}{8}=\frac{-16}{8}=-2\)
\(\Rightarrow\hept{\begin{cases}x-1=-4\\y-2=-6\\z-3=-8\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=-4\\z=-5\end{cases}}\)
Vậy \(x=-3\); \(y=-4\); \(z=-5\)
e) \(x\left(x+y+z\right)=-12\); \(y\left(y+z+x\right)=18\); \(z\left(z+x+y\right)=30\)
\(\Rightarrow x\left(x+y+z\right)+y\left(y+z+x\right)+z\left(z+x+y\right)=-12+18+30\)
\(\Leftrightarrow\left(x+y+z\right)^2=36\)\(\Leftrightarrow\orbr{\begin{cases}x+y+z=-6\\x+y+z=6\end{cases}}\)
TH1: Nếu \(x+y+z=-6\)\(\Rightarrow x=\frac{-12}{-6}=2\); \(y=\frac{18}{-6}=-3\); \(z=\frac{30}{-6}=-5\)
TH2: Nếu \(x+y+z=6\)\(\Rightarrow x=\frac{-12}{6}=-2\); \(y=\frac{18}{6}=3\); \(z=\frac{30}{6}=5\)
Vậy các cặp giá trị \(\left(x;y;z\right)\)thỏa mãn là \(\left(2;-3;-5\right)\), \(\left(-2;3;5\right)\)
Theo bài toán :
\(x=\frac{z}{2}\Rightarrow\frac{x}{10}=\frac{\frac{z}{2}}{10}=\frac{z}{20}\)
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{20}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta được:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{20}=\frac{x+2y-3z}{10+30-60}=\frac{20}{-20}=-1\)
\(\Rightarrow x=10.-1=-10\)
\(y=15.-1=15\)
\(z=20-1=-20\)
Bài `10`
`a,` Ta có : `x/2=y/3=>(4x)/8 =(3y)/9`
ADTC dãy tỉ số bằng nhau ta có :
`(4x)/8 =(3y)/9=(4x-3y)/(8-9)=(-2)/(-1)=2`
`=> x/2=2=>x=2.2=4`
`=>y/3=2=>y=2.3=6`
`b,` Ta có : `2x=5y=>x/5=y/2`
ADTC dãy tỉ số bằng nhau ta có :
`x/5=y/2=(x+y)/(5+2)=-42/7=-6`
`=>x/5=-6=>x=-6.5=-30`
`=>y/2=-6=>y=-6.2=-12`
Bài `11`
`a,` Ta có : `x/3=y/4=z/6=>x/3=(2y)/8 =(3z)/18`
ADTC dãy tỉ số bằng nhau ta có :
`x/3=(2y)/8=(3z)/18=(x+2y-3z)/(3+8-18)=(-14)/(-7)=2`
`=>x/3=2=>x=2.3=6`
`=>y/4=2=>y=2.4=8`
`=>z/6=2=>z=2.6=12`
Bạn đăng lại `2` câu sau nhe , mình ko hiểu `x=y-z` với `15x-5y=3x=45`
`d,` Ta có :
`x/2=y/3=>x/4=y/6`
`y/2=z/3=>y/6=z/9`
`-> x/4=y/6=z/9=>x/4=(2y)/12 =(3z)/27`
ADTC dãy tỉ số bằng nhau ta có :
`x/4=(2y)/12=(3z)/27=(x-2y+3z)/(4-12+27)=19/19=1`
`=>x/4=1=>x=1.4=4`
`=>y/6=1=>y=1.6=6`
`=>z/9=1=>z=1.9=9`
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{12}=\dfrac{y}{\dfrac{5}{2}}=\dfrac{z}{\dfrac{10}{3}}=\dfrac{x-y-z}{12-\dfrac{5}{2}-\dfrac{10}{3}}=\dfrac{74}{\dfrac{37}{6}}=12\)
Do đó: x=144; y=30; z=40