K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2021

theo t/c day ti số = nhau ta có:

12x-15y/7=20z-12x/9=15y-20z/11=12x-15y+20z-12x15y-20z/7+9+11=0

suy ra 12x-15y=0, 20z-12x=0

suy ra 12x=15y,20z=12x

suy ra 4/5x=y,z=3/5x (1)

thay (1) vào x+y+z=48 :

4/5x+3/5x+x=48

x.12/5=48

x=20

thay x=20 vào (1):

y=4/5.20 suy ra y=16

z=3/5.20 suy ra z=12

vậy :...

Ta có: \(\frac{\left(12x-15y\right)}{7}=\frac{\left(20z-12x\right)}{9}=\frac{\left(15y-20z\right)}{11}\)\(=0\)(đoạn này là bn cộng tử lại nha)

=>12x=15y

20z=12x

15y=20z

=> 12x=15y=20z

=>y=4/5x;z=3/5x

Thay vào x+y+x=48, ta có: 12/5x=48

=> x=20, y=16, z=12

10 tháng 2 2016

bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 =>  x-1/3=y-2/4=z-3/5 

áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1

do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương t

 

 

24 tháng 3 2021

Bài 1: 

a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )

30 tháng 10 2021

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{18}=\dfrac{x+y-z}{10+15-18}=\dfrac{25}{7}\)

Do đó: \(\left\{{}\begin{matrix}x=\dfrac{250}{7}\\y=\dfrac{375}{7}\\y=\dfrac{480}{7}\end{matrix}\right.\)

30 tháng 10 2021

\(\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{y}{5}=\dfrac{z}{6}\end{matrix}\right.\)\(\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{18}\)

Áp dụng t/c dtsbn:

\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{18}=\dfrac{x+y-z}{10+15-18}=\dfrac{25}{7}\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{25}{7}.10=\dfrac{250}{7}\\y=\dfrac{25}{7}.15=\dfrac{375}{7}\\z=\dfrac{25}{7}.18=\dfrac{450}{7}\end{matrix}\right.\)

25 tháng 1 2022

\(xy+3x-y=6\\ \Rightarrow x\left(y+3\right)-y-3=3\\ \Rightarrow x\left(y+3\right)-\left(y+3\right)=3\\ \Rightarrow\left(x-1\right)\left(y+3\right)=3\)

Vì \(x,y\in Z\Rightarrow\left\{{}\begin{matrix}x-1,y+3\in Z\\x-1,y+3\inƯ\left(3\right)\end{matrix}\right.\)

Ta có bảng:

x-1-1-313
y+3-3-131
x0-224
y-6-40-2

Vậy \(\left(x,y\right)\in\left\{\left(0;-6\right);\left(-2;-;\right);\left(2;0\right);\left(4;-2\right)\right\}\)

 

25 tháng 1 2022

\(xy+3x-y=6\)

\(x\left(y+3\right)-\left(y+3\right)=3\)

\(\left(x-1\right)\left(y+3\right)=3\)

Đến đây em tự xét các trường hợp nha

16 tháng 1 2018

\(x+y+z=\frac{x}{y+z-3}=\frac{y}{x+z-4}=\frac{z}{x+y+7}\)

Với \(x+y+z=0\) dễ dàng có được \(x=y=z=0\)

Với \(x+y+z\ne0\) áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{y+z-3}=\frac{y}{x+z-4}=\frac{z}{x+y+7}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)

\(\Rightarrow x+y+z=\frac{1}{2}\Leftrightarrow\hept{\begin{cases}y+z=\frac{1}{2}-x\\x+z=\frac{1}{2}-y\\x+y=\frac{1}{2}-z\end{cases}}\)

Suy ra: \(\frac{x}{\frac{1}{2}-x-3}=\frac{y}{\frac{1}{2}-y-4}=\frac{z}{\frac{1}{2}-z+7}=\frac{1}{2}\)

Dễ r:v

a) Áp dụng tính chất dãy tỉ số bằng nhau ta được:

X/3 = y/4 = x/3 + y/4 = 28/7 = 4

=> x = 4 × 3 = 12

=> y = 4 × 4 = 16

Vậy x = 12, y = 16

B) Áp dụng tính chất dãy tỉ số bằng nhau ta được:

X/2 = y/(-5) = x/2 - y/(-5) = (-7)/7 = -1

=> x = -1 × 2 = -2

=> y = -1 × -5 = 5

Vậy x = -2, y = 5

C) làm tương tự như bài a, b

9 tháng 12 2021

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

x8=y12=z15=x+y−z8+12−15=105=2x8=y12=z15=x+y−z8+12−15=105=2

Do đó: x=16; y=24; z=30