Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Áp dụng tính chất của dãy tỉ số bằng nhau, có:
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{x+y-z}{6+4-3}=\frac{21}{7}=3\)
Suy ra: \(\frac{x}{6}=3\Rightarrow x=6\cdot3=18\)
\(\frac{y}{4}=3\Rightarrow y=3\cdot4=12\)
\(\frac{z}{3}=3\Rightarrow z=3\cdot3=9\)
Vậy x = 18, y = 12, z = 9
b/ Ta có: 3x = 2y => x/2 = y/3 => \(\frac{x^2}{2^2}=\frac{y^2}{3^2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, có:
\(\frac{x^2}{2^2}=\frac{y^2}{3^2}=\frac{x^2-y^2}{2^2-3^2}=?\)
đề thiếu
a, x/y = -6/9 và x-y= 30
đổi: x/y=-6/9
= x/9 =y/-6
áp dụng t/c của dãy tỉ số bằng nhau, ta có:
x/9=y/-6=x-y/9-(-6)=30/15=2
suy ra : x/9=2 => x=9.2=18
y/-6=2 => y=-6.2=12
vậy x=18: y = 12
tích cho mih nhé ^^
Ta có:
\(\frac{x}{2}=\frac{y}{3}\)=>\(\frac{x}{10}=\frac{y}{15}\)
\(\frac{y}{5}=\frac{z}{4}\)=>\(\frac{y}{15}=\frac{z}{12}\)
=>\(\frac{x}{10}=\frac{y}{15}=\frac{z}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{12}=\frac{x-y+z}{10-15+12}=\frac{-49}{7}=-7\)
=>\(\frac{x}{10}=7\)=>x=7.10=70
\(\frac{y}{15}=7\)=>y=7.15=105
\(\frac{z}{12}=7\)=>z=7.12=84
Vậy x=70 ;y=105 ;z=84
\(\frac{x}{2}=\frac{y}{3}\rightarrow\frac{x}{10}=\frac{y}{15}\)
\(\frac{y}{5}=\frac{z}{4}\rightarrow\frac{y}{15}=\frac{z}{12}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{12}=\frac{x-y+z}{10-5+12}=\frac{-49}{17}\)
\(\Rightarrow x=-\frac{490}{17};y=-\frac{735}{17};z=-\frac{588}{17}\)
\(\frac{x+2}{7}=\frac{y-3}{5}=\frac{z}{3}=\frac{x+2+y-3-z}{7+5-3}=\frac{x+y-z-1}{9}=\frac{-17-1}{9}=\frac{-18}{9}=-2\)
\(\frac{x+2}{7}=-2\Rightarrow x=-16\)
\(\frac{y-3}{5}=-2\Rightarrow y=-12\)
\(\frac{z}{3}=-2\Rightarrow z=-6\)
\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z+3}{5}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z+3}{5}=\frac{x+1+y+2+z+3}{3+4+5}=\frac{24}{12}=2\)
\(\frac{x+1}{3}=2\Rightarrow x+1=6\Rightarrow x=5\)
\(\frac{y+2}{4}=2\Rightarrow y+2=8\Rightarrow y=6\)
\(\frac{z+3}{5}=2\Rightarrow z+3=10\Rightarrow z=7\)
Vậy x=5;y=6;z=7
x/2=y/3 <=> x/8 = y/12 (nhân 2 vế với 1/4) (1)
y/4=z/5 <=> y/12 = z/15 (nhân hai vế với 1/3) (2)
Từ (1) và (2) suy ra:
x/8=y/12=z/15 = (x+y-z)/(8+12-15) = 10/5 =2
(vì x+y-z=10 và áp dụng tính chất của dãy tỷ số bằng nhau)
Vậy:
x = 2.8=16
y = 2.12 = 24
z = 2.15 = 30
\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}\)
\(\frac{x}{8}=2\Leftrightarrow x=16\)
\(\frac{y}{12}=2\Leftrightarrow y=24\)
\(\frac{z}{15}=2\Leftrightarrow z=30\)
Vậy x = 16 , y=24 và z = 30
a) \(\frac{x}{2}=\frac{y}{3}\) \(\frac{y}{4}=\frac{z}{5}\)và x2-y2=16
Ta có: \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{4}=\frac{y}{12}\)(1)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)(2)
Từ (1) và (2) => \(\frac{x}{4}=\frac{y}{12}\)
=> \(\frac{x}{4}=\frac{y}{12}\Rightarrow\frac{x^2}{16}=\frac{y^2}{154}\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x^2}{16}=\frac{y^2}{154}=\frac{x^2-y^2}{16-154}=\frac{16}{-138}=\frac{8}{69}\)
Đến đây làm nốt
should a person làm sai rồi, cách làm thì đúng nhưng nhân sai thì phải, cẩn thận nha =)
\(\frac{x}{2}=\frac{y}{3}=>\frac{x}{8}=\frac{y}{12}\)
\(\frac{y}{4}=\frac{z}{5}=>\frac{y}{12}=\frac{z}{15}\)
\(=>\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=>\frac{x^2}{64}=\frac{y^2}{144}=\frac{z^2}{225}\)
áp dụng t/c dãy tỉ sô bằng nhau ta có:
\(\frac{x^2}{64}=\frac{y^2}{144}=\frac{z^2}{225}=\frac{x^2-y^2}{64-144}=\frac{16}{-80}=-\frac{1}{5}\)
\(x^2=\frac{1}{5}.64=\frac{64}{5}=>x=\sqrt{\frac{64}{5}}\)
tương tự y và z nha