\(\left\{{}\begin{matrix}x+y+z=6\\x^4+y^4+z^4=6xyz\end{matrix...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
30 tháng 5 2020

Ta có:

\(x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\ge xyz\left(x+y+z\right)=6xyz\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=z=2\)

Vậy nghiệm của hệ là \(\left(x;y;z\right)=\left(2;2;2\right)\)

1 tháng 7 2020

b, Ta có : \(\left\{{}\begin{matrix}x+y+z=3\\y+z+t=4\\z+t+x=5\\t+x+y=6\end{matrix}\right.\)

=> \(x+y+z+y+z+t+z+t+x+t+x+y=18\)

=> \(3\left(x+y+z+t\right)=18\)

=> \(x+y+z+t=6\)

=> \(x+y+z+t=x+y+t\)

=> \(z=0\)

=> \(\left\{{}\begin{matrix}x+y=3\\y+t=4\\x+t=5\\x+y+t=6\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x+y=3\\y+t=4\\x+t=5\\y+5=6\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x+1=3\\t+1=4\\x+t=5\\y=1\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=2\\t=3\\x+t=5\\y=1\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}x=2\\y=1\\z=0\\t=3\end{matrix}\right.\)

1 tháng 7 2020

a, Ta có : \(\left\{{}\begin{matrix}7xy=12\left(x+y\right)\\9yz=20\left(y+z\right)\\8zx=15\left(z+x\right)\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}7xy-12x-12y=0\\9yz-20y-20z=0\\8zx-15z-15x=0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=\frac{12y}{7y-12}\\y=\frac{20z}{9z-20}\\x=\frac{15z}{8z-15}\end{matrix}\right.\)

=> \(12y\left(8z-15\right)=15z\left(7y-12\right)\)

=> \(96yz-180y=105yz-180z\)

=> \(105yz-96yz=-180y+180z\)

=> \(9yz=-180y+180z\)

=> \(180z-180y=20y+20z\)

=> \(180z-20z=180y+20y=160z=200y\)

=> \(y=\frac{4}{5}z\)

=> \(\frac{20z}{9z-20}=\frac{4z}{5}\)

=> \(4z\left(9z-20\right)=100z\)

=> \(36z^2-180z=0\)

=> \(\left[{}\begin{matrix}z=5\\z=0\end{matrix}\right.\)

TH1 : z = 0 .

=> \(x=y=z=0\)

TH2 : z = 5 .

=> \(\left\{{}\begin{matrix}7xy=12\left(x+y\right)\\45y=20\left(y+5\right)\\40x=15\left(5+x\right)\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=4\\x=3\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=3\\y=4\\z=5\end{matrix}\right.\)

a: Sửa đề: 

\(\left\{{}\begin{matrix}3xy=2\left(x+y\right)\\4yz=3\left(y+z\right)\\5xz=6\left(z+x\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x+y}{xy}=\dfrac{3}{2}\\\dfrac{y+z}{yz}=\dfrac{4}{3}\\\dfrac{x+z}{xz}=\dfrac{5}{6}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{3}{2}\\\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{4}{3}\\\dfrac{1}{x}+\dfrac{1}{z}=\dfrac{5}{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{3}{2}\\\dfrac{1}{y}=1\\\dfrac{1}{z}=\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow x=\dfrac{2}{3};y=1;z=3\)

b: Áp dụng tính chất của dãy tỉ số bằng nhau,ta được:

\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{9}=\dfrac{7x-3y+2z}{7\cdot4-3\cdot3+2\cdot9}=\dfrac{37}{37}=1\)

=>x=4; y=3; z=9

 

b: =>x^2-y^2-4y-2x-3=0 và x^2+2x+y=0

=>x^2-2x+1-y^2-4y-4=0 và x^2+2x+y=0

=>x=1 và y=-2 và x^2+2x+y=0

=>Hệ vô nghiệm

a: \(\Leftrightarrow\left\{{}\begin{matrix}z=2x-5\\y=3-2x+z=3-2x+2x-5=-2\\3x-2\cdot\left(-2\right)+2x-5=14\end{matrix}\right.\)

=>y=-2; 3x+4+2x-5=14; z=2x-5

=>y=-2; x=3; z=2*3-5=1

NV
18 tháng 10 2020

Bạn tham khảo:

Câu hỏi của Nguyễn Mai - Toán lớp 9 | Học trực tuyến

22 tháng 11 2017

\(x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\ge xyz\left(x+y+z\right)=xyz\)

Dấu = xảy ra khi \(x=y=z=\dfrac{1}{3}\)