Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{6}=\frac{y}{4}\) ; Suy ra \(\frac{x}{6}=\frac{y}{4}=\frac{z}{5}\) hay \(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}=\frac{-x-y+z}{-6-4+5}=\frac{-10}{-5}=2\)
Suy ra : x = 2.6 = 12
y = 2.4 = 8
z = 2.5 = 10
b,c,d tương tự
e/ \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\) ; \(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\)
Tới đây bạn làm tương tự a,b,c,d
f tương tự.
g/ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Leftrightarrow\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)
Bạn áp dụng dãy tỉ số bằng nhau là ra.
h/ Áp dụng dãy tỉ số bằng nhau :
\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=0\)
Từ đó lại suy ra \(\begin{cases}12x=15y\\20z=12x\\15y=20z\end{cases}\)
Rút ra tỉ số và áp dụng dãy tỉ số bằng nhau.
Có: \(\frac{y-2}{3}=\frac{2y-4}{6};\frac{z-3}{4}=\frac{3z-9}{12}\)
\(\Rightarrow\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2y-4}{6}=\frac{3z-9}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{x-1-2y+4+3z-9}{2-6+12}=\frac{14-6}{8}=\frac{8}{8}=1\)
Vì \(\frac{x-1}{2}=1\Rightarrow x-1=1.2=2\Rightarrow x=2+1=3\)
\(\frac{y-2}{3}=1\Rightarrow y-2=3.1=3\Rightarrow y=3+2=5\)
\(\frac{z-3}{4}=1\Rightarrow z-3=1.4=4\Rightarrow z=4+3=7\)
Tự kết luận
cậu viết chắc lâu lắm nhỉ
a)x=4, y=6 ,z=10 c)x=6,y=9,z=12 e)x=-3,y=-5,z=154/3
b)x=12,y=16,z=28 d) y=-28, x=-42,z=-20 f)x=36,y=24,z=9
g)nản h)x=1,y=2,z=3
làm mất bao nhiêu lâu. k đúng giùm
a) ko có " z" sao làm!!
b) áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{7}\) =\(\frac{z-x}{7-4}=\frac{16}{3}\)
=> x/3 = 16/3 => x = 16
=> y/4 = 16/3 => y = ...
=> z/7 = 16/3 => z = ...
Từ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Rightarrow\frac{x-1}{2}=\frac{-2y+4}{-6}=\frac{3z-9}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có \(x=3;y=5;z=7\)
\(\frac{x-1}{2}=\frac{x-1-2y+4+3z-9}{2-6+12}=\frac{x-2y+3z-6}{8}\)=\(\frac{\left(x-2y+3z\right)-6}{8}=\frac{14-6}{8}=1\)
\(\Rightarrow\frac{x-1}{2}=1\Rightarrow x=3\);\(\frac{y-2}{3}=1\Rightarrow y-2=3\Rightarrow y=5\);\(\frac{z-3}{4}=1\Rightarrow x-3=4\Rightarrow z=7\)
Vậy \(x=3;y=5;z=7\)
ta có
\(\frac{x}{3}\)=\(\frac{y}{2}\)=> \(\frac{x}{9}\)=\(\frac{y}{6}\)
\(\frac{y}{3}\)=\(\frac{z}{5}\)=>\(\frac{y}{6}\)=\(\frac{z}{10}\)
=>\(\frac{x}{9}\)=\(\frac{y}{6}\)=\(\frac{z}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{9}\)=\(\frac{y}{6}\)=\(\frac{z}{10}\)=> \(\frac{2x}{18}\)=\(\frac{y}{6}\)=\(\frac{3z}{30}\)=\(\frac{2x-y+3z}{18-6+30}\)=\(\frac{42}{42}\)=1
Ta lại có:
\(\frac{2x}{18}\)= 1=> 2x=18=>x=9
\(\frac{y}{6}\)= 1 =>y=6
\(\frac{3z}{30}\)= 1=>3z=30=>z=10
Vậy x=9 ; y=6 và z=10