K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2019

đề thế này nhiều cặp thỏa mãn lém ;)D

6 tháng 1 2019

đề sai.xem lại

8 tháng 4 2015

x= 1

y=1

z=1

9 tháng 3 2018

x=1

y=1

z=1

5 tháng 2 2017

ta co |x+7|+|12+x|=5

=>x+7=5=>x=-2(loại)

=>12+x=5=>x=-7  (tm)

=>x=-7

bn thử lấy máy tính mà bấm xem đúng ko nhé

14 tháng 1 2017

\(\hept{\begin{cases}xy=a\\x+y=b\end{cases}\Rightarrow x\left(b-x\right)=a\Leftrightarrow-x^2+bx=a\Leftrightarrow x^2-bx+\frac{b^2}{4}=\frac{b^2}{4}-a}\)

\(\Leftrightarrow\left(x-\frac{b}{2}\right)^2=\left(\frac{b^2}{4}-a\right)=\frac{b^2-4a}{4}\)

có nghiệm \(\Rightarrow b^2-4a\ge0\)

\(\hept{\begin{cases}x=\frac{b-\sqrt{b^2-4a}}{2}\\x=\frac{b+\sqrt{b^2-4a}}{2}\end{cases}}\)

Nghiệm nguyên \(b^2-4a=n^2.b^2\) Với n phải là số lẻ Đảm khi cộng(+) trừ(-) b ra số chẵn

\(\left(z+t\right)^2-4\left(xt\right)+4=n^2\left(z+t\right)^2\)

\(\left(z-t\right)^2+4=n^2\left(z+t\right)^2\)

\(\Leftrightarrow\left[n\left(z+t\right)\right]^2-\left(z-t\right)^2=4\)

Hiệu hai số CP =4 duy nhất có 4 và 0

\(\hept{\begin{cases}\left(z-t\right)^2=0\Rightarrow z=t\\\left[n\left(z+t\right)\right]^2=4\end{cases}}\Rightarrow dpcm\)

18 tháng 11 2021

\(x^2=y.z\Rightarrow x^3=x.y.z\\ y^2=x.z\Rightarrow y^3=x.y.z\\ z^2=x.y\Rightarrow z^3=x.y.z\\ \Rightarrow x^3=y^3=z^3\\ \Rightarrow x=y=z\)

6 tháng 4 2015

2xyz=x+y+z+9

=>2=1/yz+1/xz+1/xy+9/xyz

 nếu x>=y>=z>=1

=>2=< (1/z^2)+(1/z^2)+(1/z^2)+(1/z^2)=(1/z^2)4

=>z^2=<24

=>z=1 ;2 ;3 ;4

rồi thay vào tìm tiếp x ;y

15 tháng 1 2018

 xyz = 9 + x + y + z 
<=> 1 = 1/yz + 1/xz + 1/xy + 9/xyz 
giả sử: x ≥ y ≥ z ≥ 1, ta có: 
1 = 1/yz + 1/xz + 1/xy + 9/xyz ≤ 1/z^2 + 1/z^2 + 1/z^2 + 9/z^2 = 12/z^2 
=> z^2 ≤ 12 => z = 1, 2 , 3 
*z = 1: 
1=1/y + 1/x + 1/xy ≤ 1/y + 1/y + 1/y = 3/y 
=> y ≤ 3 => y = 1,2,3 
y =1 => x= 11 + x (vô nghiệm) 
y = 2 => 2x = 12 + x => x = 12 trường hợp nầy nghiệm (12,2,1) 
y = 3 => 3x = 13 + x ( không có ngiệm x nguyên) 

* z = 2 
1 = 1/2y + 1/2x + 1/xy + 1/2xy = 1/2y + 1/2x + 3/2xy ≤ 1/2(1/y + 1/y + 3/y) = .5/2y 
=> y ≤ 5/2 => y = 2 
=> 4x = 13 + x (không có nghiệm x nguyên) 

* z =3: 
1 = 1/3y + 1/3x + 1/xy + 3/xy = 1/3y + 1/3x + 4/xy ≤ 1/3(1/y +1/y + 12/y) = 14/3y 
=> y ≤ 14/3 => y = 3, 4 
y = 3 => 9x = 15 + x (không có nghiệm x nguyên) 
y = 4 => 12x = 16 + x (không có nghiệm x nguyên) 

Vậy pt có nghiệm là (12,2,1) và các hoán vị của nó.

18 tháng 1 2022

Xét \(x\le y\le z\) vì x,y,z nguyên dương

\(\Rightarrow xyz\ne0\)và \(x\le y\le z\Rightarrow xyz=x+y+z\le3z\)

\(\Rightarrow xy\le3\Rightarrow xy\in\left\{1;2;3\right\}\)

- Nếu \(xy=1\Rightarrow x=y=1\)ta có: \(2+z=z\)( không thỏa mãn )

- Nếu \(xy=2\Rightarrow x=1;y=2\Rightarrow z=3\)( thỏa mãn ) ( vì \(x\le y\))

- Nếu \(xy=3\Rightarrow x=1;y=3\Rightarrow z=2\)( thỏa mãn ) ( vì \(x\le y\))

Vậy......................................

18 tháng 1 2022

 \(\text{Do vai trò bình đẳng của x, y, z trong phương trình, trước hết ta xét x ≤ y ≤ z. }\)
\(x,y,z\)nguyên dương nên xyz ≠ 0, do x ≤ y ≤ z => xyz = x + y + z ≤ 3z => xy ≤ 3 
=> xy thuộc {1 ; 2 ; 3}. 
Nếu xy = 1 => x = y = 1, thay vào (2) ta có : 2 + z = z, vô lí. 
Nếu xy = 2, do x ≤ y nên x = 1 và y = 2, thay vào (2), => z = 3. 
Nếu xy = 3, do x ≤ y nên x = 1 và y = 3, thay vào (2), => z = 2. 
Vậy nghiệm nguyên dương của phương trình (2) là các hoán vị của (1 ; 2 ; 3).

28 tháng 2 2018

Ta có: \(xy-z^2=1\Leftrightarrow xy=z^2+1\ge1\)

Như vậy,nghĩa là \(x\)và \(y\) cùng dấu\(\Rightarrow\orbr{\begin{cases}x;y\ge0\\x;y\le0\end{cases}}\)

Với \(x;y\ge0\)ta tìm được tập hợp nghiệm: \(\left(x;y\right)=\left(1;1\right);\left(0;2\right);\left(2;0\right)\)(*)

Với \(x;y\le0\) thì pt vô nghiệm vì \(2>0\)(số dương) .Vì tổng 2 số âm không thể là 1 số dương

 Từ (*) Kết hợp với điều kiện: \(xy-z^2=1\)

Ta tìm được \(x=y=1\)