Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(x\le y\le z\) vì x,y,z nguyên dương
\(\Rightarrow xyz\ne0\)và \(x\le y\le z\Rightarrow xyz=x+y+z\le3z\)
\(\Rightarrow xy\le3\Rightarrow xy\in\left\{1;2;3\right\}\)
- Nếu \(xy=1\Rightarrow x=y=1\)ta có: \(2+z=z\)( không thỏa mãn )
- Nếu \(xy=2\Rightarrow x=1;y=2\Rightarrow z=3\)( thỏa mãn ) ( vì \(x\le y\))
- Nếu \(xy=3\Rightarrow x=1;y=3\Rightarrow z=2\)( thỏa mãn ) ( vì \(x\le y\))
Vậy......................................
\(\text{Do vai trò bình đẳng của x, y, z trong phương trình, trước hết ta xét x ≤ y ≤ z. }\)
Vì \(x,y,z\)nguyên dương nên xyz ≠ 0, do x ≤ y ≤ z => xyz = x + y + z ≤ 3z => xy ≤ 3
=> xy thuộc {1 ; 2 ; 3}.
Nếu xy = 1 => x = y = 1, thay vào (2) ta có : 2 + z = z, vô lí.
Nếu xy = 2, do x ≤ y nên x = 1 và y = 2, thay vào (2), => z = 3.
Nếu xy = 3, do x ≤ y nên x = 1 và y = 3, thay vào (2), => z = 2.
Vậy nghiệm nguyên dương của phương trình (2) là các hoán vị của (1 ; 2 ; 3).
từ điều kiện suy ra \(\frac{y+z}{x}-1=\frac{x+z}{y}-1=\frac{x+y}{z}-1\)1\(\Rightarrow\frac{y+z}{x}=\frac{x+z}{y}=\frac{x+y}{z}\)
\(\frac{y+z}{x}=\frac{x+z}{y}\Rightarrow\frac{y+z}{x}-\frac{x+z}{y}=0\)\(\Rightarrow\frac{y\left(y+z\right)-x\left(x+z\right)}{xy}=0\)
\(\Rightarrow y^2+yz-xz-x^2=0\Rightarrow y^2-x^2+yz-zx=0\)\(\Rightarrow\left(y+x\right)\left(y-x\right)+z\left(y+x\right)\)=0
\(\Rightarrow\left(y-x\right)\left(x+y+z\right)=0\)\(\Rightarrow\)hoặc y-x=0 hoặc x+y+z=0 \(\Rightarrow\)x=y hoặc x+y=-z
giải tương tự ta có hoặc x=y=z hoặc x+y=-z;y+z=-x;x+z=-y
*x=y=z thay vào biểu thức ta có bt=8
*x+y=-z;y+z=-x;x+z=-y ta có bt =\(\left(\frac{x+y}{y}\right)\left(\frac{z+y}{z}\right)\left(\frac{x+z}{x}\right)\)=-1
Ta có :
\(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{\left(y+x\right)\left(z+y\right)\left(x+z\right)}{xyz}\)
+ ) Nếu \(x+y+z\ne0\)
Theo tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
\(=\frac{\left(y+z-x\right)\left(z+x-y\right)\left(x+y-x\right)}{x+y+z}\)
\(=\frac{x+y+z}{x+y+z}\)
\(=1\)
\(\Rightarrow\hept{\begin{cases}y+z-x=x\\z+x-y=y\\x+y-z=z\end{cases}\Leftrightarrow\hept{\begin{cases}y+z=2x\\z+x=2y\\x+y=2z\end{cases}}}\)
Do đó , \(B=\frac{\left(y+x\right)\left(z+y\right)\left(x+z\right)}{xyz}=\frac{2z.2x.2y}{xyz}=8\)
+ ) Nếu \(x+y+z\ne0\text{thì}\hept{\begin{cases}x+y=-z\\x+z=-y\\y+z=-x\end{cases}}\)
Do đó , \(B=\frac{\left(-x\right).\left(-y\right).\left(-z\right)}{xyz}=-1\)
Vậy : \(B=-1\text{hoặc}B=8\)