Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{AB}{BC}=\frac{3}{5}=x\Rightarrow AB=3x;BC=5x\)
Tam giác ABC vuông tại A, theo py ta go:
\(AB^2+AC^2=BC^2\Rightarrow9x^2+144=25x^2\Rightarrow16x^2=144\Leftrightarrow x^2=9\)
=> X = 3 ; AB = 3x = 3.3=9 ; BC= 5x = 5.3 = 15
TAm giac ABC vuông tại A theo hệ thức lượng
AH.BC = AB.AC => AH= (AB.AC)/BC = (9.12)/15 = 7,2cm
AB^2 = BC . BH => BH = AB^2 /BC = 9^2/15 = 5,4
=> HC = BC - HB = 15 - 5,4 = 9,6cm
VẬY AH = 7,2 ; BH = 5,4;CH = 9,6
A B C H M
Tam giác ABC vuông tại A có AM kà trung tuyến => AM = BC/2 = \(\sqrt{41}\)/ 2
Ta có: \(\frac{AH}{AM}=\frac{40}{41}\) => AH = \(\frac{40}{41}.\frac{\sqrt{41}}{2}=\frac{20\sqrt{41}}{41}\)
Đặt AB = c; AC = b
=> b.c = AH . BC = \(\frac{20\sqrt{41}}{41}.\sqrt{41}=20\)
Áp dụng ĐL Pi ta go có : b2 + c2 = BC2 = 41
=> (b + c)2 = b2 + c2 + 2bc = 41 + 2.20 = 81 => b + c = 9 (do b; c là độ dài đoạn thẳng nên b ; c > 0 ) => b = 9 - c
Thay vào b.c = 20 ta được (9 - c).c = 20 <=> c2 - 9c + 20 = 0
<=> (c-4)(c - 5) = 0 <=> c = 4 hoặc c = 5
c = 4 => b = 5
c= 5 => b = 4
Vậy 2 cạnh góc vuông là 4 và 5
\(T=x^4+y^4+z^4\)
áp dụng bđt bunhia cốp -xki với bộ số \(\left(x^2,y^2,z^2\right);\left(1,1,1\right)\)
\(\left(\left[x^2\right]^2+\left[y^2\right]^2+\left[z^2\right]^2\right)\left(1^2+1^2+1^2\right)\ge\left(x^2+y^2+z^2\right)^2\)
\(\left(x^4+y^4+z^4\right)\ge\frac{\left(x^2+y^2+z^2\right)^2}{3}\)
\(\left(x^4+y^4+z^4\right)\ge\frac{\left(2xy+2yz+2xz\right)^2}{3}\)(bđt tương đương)
\(\left(x^4+y^4+z^4\right)\ge\frac{4}{3}\)
dấu "=" xảy rakhi và chỉ khi
\(\hept{\begin{cases}\frac{x^2}{1}=\frac{y^2}{1}=\frac{z^2}{1}\\x=y=z=1\end{cases}< =>\frac{1^2}{1}=\frac{1^2}{1}=\frac{1^2}{1}}\)(luôn đúng)
vậy dấu "=" có xảy ra
\(< =>MIN:T=\frac{4}{3}\)
sửa dòng 3 dưới lên
\(T\ge\frac{\left(xy+yz+xz\right)^2}{3}=\frac{1}{3}\)
Dấu ''='' xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}\)
Vậy GTNN T là 1/3 khi \(x=y=z=\frac{\sqrt{3}}{3}\)
Đề thiếu dữ kiện rồi bạn