Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x và y tỉ lệ nghịch với 6 và 5
nên 6x=5y
=>x/5=y/6
y và z tỉ lệ nghịch với 4 và 3
nên 4y=3z
=>y/3=z/4
=>x/5=y/6=z/8=(x+y+z)/(5+6+8)=38/19=2
=>x=10; y=12; z=16
#)Giải :
Bài 1 :
a) Ta có :
\(\frac{x}{y}=\frac{7}{10}\Leftrightarrow10x=7y\Leftrightarrow\frac{x}{7}=\frac{y}{10}\)
\(\frac{y}{z}=\frac{5}{8}\Leftrightarrow8y=5z\Leftrightarrow\frac{y}{5}=\frac{z}{8}\Leftrightarrow\frac{y}{10}=\frac{z}{16}\)
\(\Rightarrow\frac{x}{7}=\frac{y}{10}=\frac{z}{16}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x}{7}=\frac{y}{10}=\frac{z}{16}=\frac{2x-y+3z}{14-10+48}=\frac{104}{52}=2\hept{\begin{cases}\frac{x}{7}=2\\\frac{y}{10}=2\\\frac{z}{16}=2\end{cases}\Rightarrow\hept{\begin{cases}x=14\\y=20\\z=32\end{cases}}}\)
Vậy x = 14; y = 20; z = 32
Vì x,y,z tỉ lệ nghịch với 3,5,7 => \(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{7}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{7}}=\frac{2x}{\frac{2}{3}}=\frac{y}{\frac{1}{5}}=\frac{3z}{\frac{3}{7}}=\frac{2x-y+3z}{\frac{2}{3}-\frac{1}{5}+\frac{3}{7}}=\frac{68}{\frac{94}{105}}=\frac{3570}{47}\)
\(\frac{2x}{\frac{2}{3}}=\frac{3570}{47}\Rightarrow2x=\frac{2380}{47}\Rightarrow x=\frac{1190}{47}\)
\(\frac{y}{\frac{1}{5}}=\frac{3570}{47}\Rightarrow y=\frac{714}{47}\)
\(\frac{3z}{\frac{3}{7}}=\frac{3570}{47}\Rightarrow3z=\frac{1530}{47}\Rightarrow z=\frac{510}{47}\)
Vậy ....
TBRTC:\(3x=5y=7z\Rightarrow\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{7}}\)
\(\Rightarrow\frac{2x}{\frac{2}{3}}=\frac{y}{\frac{1}{5}}=\frac{3z}{\frac{3}{7}}\)
Áp dụng t/c
Xong tính x,y,z
Ta có: \(\frac{x}{4}=\frac{y}{6}=\frac{z}{8}\) => \(\frac{2x}{8}=\frac{y}{6}=\frac{3z}{24}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{8}=\frac{y}{6}=\frac{3z}{24}=\frac{2x+y-3z}{8+6-24}=\frac{20}{-10}=-2\)
=> \(\hept{\begin{cases}\frac{x}{4}=-2\\\frac{y}{6}=-2\\\frac{z}{8}=-2\end{cases}}\) => \(\hept{\begin{cases}x=-2.4=-8\\y=-2.6=-12\\z=-2.8=-16\end{cases}}\)
Vậy ...
Bài 1:
Giải:
Ta có: \(3\left(x-1\right)=2\left(y-2\right)=3\left(z-3\right)\)
\(\Rightarrow\frac{x-1}{\frac{1}{3}}=\frac{y-2}{\frac{1}{2}}=\frac{z-3}{\frac{1}{3}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{\frac{1}{3}}=\frac{y-2}{\frac{1}{2}}=\frac{z-3}{\frac{1}{3}}=\frac{2x-2}{\frac{2}{3}}=\frac{3y-6}{\frac{3}{2}}=\frac{z-3}{\frac{1}{3}}=\frac{2x-2+3y-6+z-3}{\frac{2}{3}+\frac{3}{2}+\frac{1}{3}}=\frac{\left(2x+3y+z\right)-\left(2+6+3\right)}{\frac{5}{2}}\)
\(=\frac{50-11}{\frac{5}{2}}=\frac{39}{\frac{5}{2}}=39.\frac{2}{5}=15,6\)
+) \(\frac{x-1}{\frac{1}{3}}=15,6\Rightarrow x-1=5,2\Rightarrow x=6,2\)
+) \(\frac{y-2}{\frac{1}{2}}=15,6\Rightarrow y-2=7,8\Rightarrow y=9,8\)
+) \(\frac{z-3}{\frac{1}{3}}=15,6\Rightarrow z-3=5,2\Rightarrow z=8,2\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(6,2;9,8;8,2\right)\)
Ta có :
\(x:y:z=4:6:8=2:3:4\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)
=> x= 2k
=> y = 3k
=> z = 4k
Thay vào biểu thức:
2x + y - 3z = 5
=> 4k + 3k - 12k = 5
=> -5k = 5
=> k = -1
=> x = -2 ; y = -3 ; z = -4
thank bạn