Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}\Rightarrow\frac{x^3}{8}=\frac{x.2y.3z}{24}=-27\)
\(\Rightarrow x^3=-216\Rightarrow x=-6\Rightarrow\hept{\begin{cases}y=-4,5\\z=-4\end{cases}}\)
Tìm x;y;z biết
a) \(5x=8y=3z\text{ và }x-2y+z=34\)
Giải
Từ \(5x=8y=3z\)
\(\Rightarrow\hept{\begin{cases}5x=8y\\8y=3z\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{8}=\frac{y}{5}\\\frac{y}{3}=\frac{z}{8}\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{24}=\frac{y}{15}\\\frac{y}{15}=\frac{z}{40}\end{cases}\Rightarrow}\frac{x}{24}=\frac{y}{15}=\frac{z}{40}\Rightarrow\frac{x}{24}=\frac{2y}{30}=\frac{z}{40}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{24}=\frac{y}{15}=\frac{z}{40}=\frac{x}{24}=\frac{2y}{30}=\frac{z}{40}=\frac{x-2y+z}{24-30+40}=\frac{34}{34}=1\)
\(\Rightarrow x=24.1=24;\)
\(y=15.1=15;\)
\(z=40.1=40\)
Vậy x = 24; y = 15 ; z = 40
b) \(15x=10y=6z\text{ và }xyz=-1920\left(1\right)\)
Giải
Từ \(15x=10y=6z\)
\(\Rightarrow\hept{\begin{cases}15x=10y\\10y=6z\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{y}{15}\\\frac{y}{6}=\frac{z}{10}\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{20}=\frac{y}{30}\\\frac{y}{30}=\frac{z}{50}\end{cases}}\Rightarrow\frac{x}{20}=\frac{y}{30}=\frac{z}{50}}\)
Đặt \(\frac{x}{20}=\frac{y}{30}=\frac{z}{50}=k\)
\(\Rightarrow x=20k;y=30k;z=50k\left(2\right)\)
Thay (2) vào (1) ta có :
\(\)\(20k.30k.50k=-1920\)
\(\Rightarrow k^3.30000=-1920\)
\(\Rightarrow k^3=-\frac{1920}{30000}\)
\(\Rightarrow k^3=-\frac{64}{1000}\)
\(\Rightarrow k^3=-\frac{4^3}{10^3}\)
\(\Rightarrow k^3=\left(-\frac{4}{10}\right)^3\)
\(\Rightarrow k=-\frac{4}{10}\)
Khi đó : \(x=-\frac{4}{10}.20=-8;\)
\(y=-\frac{4}{10}.30=-12;\)
\(z=-\frac{4}{10}.5=-20\)
Vậy x = - 8 ; y = - 12 ; z = - 20
c) \(x^3 +y^3+z^3=792\left(1\right)\text{ và }\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
Giải
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)
\(\Rightarrow x=2k;y=3k;z=4k\left(2\right)\)
Thay (2) vào (1) ta có :
\(\left(2k\right)^3+\left(3k\right)^3+\left(4k\right)^3=792\)
\(\Rightarrow k^3.2^3+k^3.3^3+k^3.4^3=792\)
\(\Rightarrow k^3.8+k^3.27+k^3.64=792\)
\(\Rightarrow k^3.\left(8+27+64\right)=792\)
\(\Rightarrow k^3.99=792\)
\(\Rightarrow k^3=8\)
\(\Rightarrow k^3=2^3\)
\(\Rightarrow k=2\)
Khi đó \(x=2.2=4;\)
\(y=3.2=6;\)
\(z=4.2=8\)
Vậy x = 4 ; y = 6 ; z = 8
a) \(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}\) và \(xyz=-108\)
Đặt: \(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}=k\)
\(\Rightarrow x=2k\)
\(y=\frac{3}{2}k\)
\(z=\frac{4}{3}k\)
\(\Rightarrow xyz=2k.\frac{3}{2}k.\frac{4}{3}k=4k^3=-108\Rightarrow k^3=-27\Rightarrow k=\sqrt[3]{-27}=-3\)
Vậy:
\(x=2.\left(-3\right)=-6\)
\(y=\frac{3}{2}.\left(-3\right)=-\frac{9}{2}\)
\(z=\frac{4}{3}.\left(-3\right)=-4\)
\(\frac{x}{y}=\frac{7}{20}\Leftrightarrow\frac{x}{7}=\frac{y}{20}\)
\(\frac{y}{z}=\frac{5}{8}\Leftrightarrow\frac{y}{5}=\frac{z}{8}\Leftrightarrow\frac{y}{20}=\frac{z}{32}\)
\(\Rightarrow\frac{x}{7}=\frac{y}{20}=\frac{z}{32}\) và \(3x+5y+7z=123\)
ADTCCDTSBN, ta có:
\(\frac{x}{7}=\frac{y}{20}=\frac{z}{32}=\frac{3x+5y+7z}{21+100+224}=\frac{123}{345}=\frac{41}{115}\)
\(\Rightarrow x=\frac{41}{115}.7=\frac{287}{115}\)
\(y=\frac{41}{115}.20=\frac{164}{23}\)
\(z=\frac{41}{115}.32=\frac{1312}{115}\)
a) Thiếu đề
b) Áp dụng t/c của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\) => \(\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}=\frac{4x+3y+2z}{4+6+6}=\frac{14}{16}=\frac{7}{8}\)
=> \(\hept{\begin{cases}\frac{x}{1}=\frac{7}{8}\\\frac{y}{2}=\frac{7}{8}\\\frac{z}{3}=\frac{7}{8}\end{cases}}\) => \(\hept{\begin{cases}x=\frac{7}{8}.1=\frac{7}{8}\\y=\frac{7}{8}.2=\frac{7}{4}\\z=\frac{7}{8}.3=\frac{21}{8}\end{cases}}\)
Vậy ...
Sửa lại xíu :
\(a)\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và \(x-2y+3z=14\)
\(b)\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)và \(4x+3y+2z=36\)
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
\(\Rightarrow\frac{x-1}{2}=\frac{2\left(y-2\right)}{2\cdot3}=\frac{3\left(z-3\right)}{3\cdot4}\)
\(\Rightarrow\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)
theo tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{\left(x-1\right)-\left(2y-4\right)+\left(3z-9\right)}{2-6+12}=\frac{x-1-2y+4+3z-9}{8}\)
\(=\frac{\left(x-2y+3z\right)+\left(-1+4-9\right)}{8}=\frac{14+\left(-6\right)}{8}=\frac{8}{8}=1\)
\(\Rightarrow\hept{\begin{cases}x=1\cdot2+1=3\\y=1\cdot3+2=5\\z=1\cdot4+3=7\end{cases}}\)
vậy_
1, \(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}\)\(\Leftrightarrow\frac{x}{2}=\frac{y}{\frac{3}{2}}=\frac{z}{\frac{4}{3}}=k\)\(\Leftrightarrow\hept{\begin{cases}x=2k\\y=\frac{3}{2}k\\z=\frac{4}{3}k\end{cases}}\)
Mà xyz = -108
\(\Leftrightarrow2k.\frac{3}{2}k.\frac{4}{3}k=-108\)
\(\Leftrightarrow4k^3=-108\)
<=> k3 = -27
<=> k = -3
\(\Leftrightarrow\hept{\begin{cases}x=2k=2.-3=-6\\y=\frac{3}{2}k=\frac{3}{2}.\left(-3\right)=\frac{-9}{2}\\z=\frac{4}{3}k=\frac{4}{3}.\left(-3\right)=-4\end{cases}}\)
2, \(\frac{x}{5}=\frac{y}{7}=\frac{z}{8}\)\(\Leftrightarrow\frac{2x}{10}=\frac{3y}{21}=\frac{4z}{32}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{10}=\frac{3y}{21}=\frac{4z}{32}=\frac{2x+3y-4z}{10+21-32}=\frac{15}{-1}=-15\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{5}=-15\\\frac{y}{7}=-15\\\frac{z}{8}=-15\end{cases}}\Rightarrow\hept{\begin{cases}x=-75\\y=-105\\z=-120\end{cases}}\)
3, 3x = 5y \(\Leftrightarrow\frac{x}{5}=\frac{y}{3}\)\(\Leftrightarrow\frac{x}{55}=\frac{y}{33}\)
2y = 11z \(\Leftrightarrow\frac{y}{11}=\frac{z}{2}\) \(\Leftrightarrow\frac{y}{33}=\frac{z}{6}\)
\(\Rightarrow\frac{x}{55}=\frac{y}{33}=\frac{z}{6}\)\(\Rightarrow\frac{2x}{110}=\frac{5y}{165}=\frac{z}{6}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{110}=\frac{5y}{165}=\frac{z}{6}=\frac{2x+5y-z}{110+165-6}=\frac{34}{269}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{55}=\frac{34}{269}\\\frac{y}{33}=\frac{34}{269}\\\frac{z}{6}=\frac{34}{269}\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{1870}{269}\\y=\frac{1122}{269}\\z=\frac{204}{269}\end{cases}}\)
4, \(\frac{x}{3}=\frac{2}{y}=\frac{z}{4}=k\)\(\Leftrightarrow\hept{\begin{cases}x=3k\\y=\frac{2}{k}\\z=4k\end{cases}}\)
Mà xyz = 240
<=> 3k . 2/k . 4k = 240
<=> 24k = 240
<=> k = 10
\(\Leftrightarrow\hept{\begin{cases}x=3k=3.10=30\\y=\frac{2}{k}=\frac{2}{10}=\frac{1}{5}\\z=4k=4.10=40\end{cases}}\)
1) Ta có: \(\frac{3x}{4}=\frac{2y}{3}=\frac{9z}{7}.\)
=> \(\frac{x}{\frac{4}{3}}=\frac{y}{\frac{3}{2}}=\frac{z}{\frac{7}{9}}\)
=> \(\frac{x}{\frac{4}{3}}=\frac{2y}{3}=\frac{3z}{\frac{7}{3}}\) và \(x+2y-3z=18.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{\frac{4}{3}}=\frac{2y}{3}=\frac{3z}{\frac{7}{3}}=\frac{x+2y-3z}{\frac{4}{3}+3-\frac{7}{3}}=\frac{18}{2}=9.\)
\(\left\{{}\begin{matrix}\frac{x}{\frac{4}{3}}=9\Rightarrow x=9.\frac{4}{3}=12\\\frac{y}{\frac{3}{2}}=9\Rightarrow y=9.\frac{3}{2}=\frac{27}{2}\\\frac{z}{\frac{7}{9}}=9\Rightarrow z=9.\frac{7}{9}=7\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(12;\frac{27}{2};7\right).\)
Chúc bạn học tốt!
Ta có : \(\frac{x}{2}=\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{2x^3}{16}-\frac{3x^2}{12}+\frac{xyz}{60}=-108\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{5}=\frac{z}{6}=\frac{2x^3-3x^2+xyz}{16-12+60}=-\frac{108}{64}=-\frac{27}{16}\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{2}=-\frac{27}{16}\Rightarrow x=-\frac{27}{16}.2=-\frac{27}{8}\\\frac{y}{5}=-\frac{27}{16}\Rightarrow y=-\frac{27}{16}.5=-\frac{135}{16}\\\frac{z}{6}=-\frac{27}{16}\Rightarrow z=-\frac{27}{16}.6=-\frac{81}{8}\end{matrix}\right.\)
Vậy...
Áp dụng t/c dãy tỉ số = nha ta có :
\(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}=\frac{x.y.z}{2.3.4}=\frac{-108}{24}=-4,5\)
\(\Rightarrow\frac{x}{2}=-4,5\Rightarrow x=-9\)
\(\Rightarrow\frac{2y}{3}=-4,5\Rightarrow y=-6,75\)
\(\Rightarrow\frac{3z}{4}=-4,5\Rightarrow z=-6\)
sai rồi
Đặt \(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}=k\left(k\ne0\right)\)
\(\Rightarrow\hept{\begin{cases}x=2k\\2y=3k\\3z=4k\end{cases}\Rightarrow x.2y.3z=2k.3k.4k=24.k^3}\)
Ta có x.y.z=-108 suy ra x.2y.3z=-108.2.3=-648
\(\Rightarrow24.k^3=-648\Rightarrow k^3=-27\Rightarrow k=-3\)
\(\Rightarrow\hept{\begin{cases}x=-6\\2y=-9\\3z=-12\end{cases}}\Rightarrow\hept{\begin{cases}x=-6\\y=-4.5\\z=-4\end{cases}}\)