K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2016

Theo đề Bài :

5x = 6y => 35x = 30y

5y = 6z => 30y = 36z

=> 35x = 30y = 36z

Ta có : BCNN(35,30,36) = 1260

=> \(\frac{35x}{1260}=\frac{30y}{1260}=\frac{36z}{1260}\) 

=> \(\frac{x}{36}=\frac{y}{42}=\frac{z}{35}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{36}=\frac{y}{42}=\frac{z}{35}=\frac{x+2y-3z}{36+84-105}=\frac{42}{15}=\frac{14}{5}\)

=> \(\frac{x}{36}=\frac{14}{5}\Rightarrow x=100,8\)

=> \(\frac{y}{42}=\frac{14}{5}\Rightarrow y=117,6\)

=> \(\frac{z}{35}=\frac{14}{5}\Rightarrow z=98\)

CHO XIN TÍCH ĐÚNG NHA MỌI NGƯỜI

20 tháng 9 2019

\(a,4x=5y\:\Rightarrow\frac{x}{5}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{12}\)

\(4y=6z\Rightarrow\frac{y}{6}=\frac{z}{4}\Rightarrow\frac{y}{12}=\frac{z}{8}\)

\(\Rightarrow\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)

\(\Rightarrow\frac{x}{15}=\frac{2y}{24}=\frac{3z}{24}\)

\(\Rightarrow\frac{x-2y+3z}{15-24+24}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)

\(\Rightarrow\frac{5}{15}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)

\(\Rightarrow\frac{1}{3}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{1}{3}\cdot15=5\\y=\frac{1}{3}\cdot12=4\\z=\frac{1}{3}\cdot8=\frac{8}{3}\end{cases}}\)

20 tháng 9 2019

mọi người giúp mk câu b, c, d còn lại nha

3: 10x=6y=5z

\(\Leftrightarrow\dfrac{10x}{30}=\dfrac{6y}{30}=\dfrac{5z}{30}\)

hay x/3=y/5=z/6

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}=\dfrac{x+y-z}{3+5-6}=\dfrac{24}{2}=12\)

Do đó: x=36; y=60; z=72

4: Ta có: 9x=3y=2z

nên \(\dfrac{9x}{18}=\dfrac{3y}{18}=\dfrac{2z}{18}\)

hay x/2=y/6=z/9

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{6}=\dfrac{z}{9}=\dfrac{x-y+z}{2-6+9}=\dfrac{50}{5}=10\)

Do đó: x=20; y=60; z=90

11 tháng 7 2019

\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)

\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)

\(\hept{\begin{cases}\frac{x}{2}=\frac{x}{3}\\\frac{y}{5}=\frac{x}{7}\end{cases}\Rightarrow}\frac{x}{2}=\frac{5y}{15};\frac{3y}{15}=\frac{z}{7}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng tính chát dãy tỉ số = nhau ta có:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

\(\Rightarrow\frac{x}{10}=2\Rightarrow x=20\)

\(\frac{y}{15}=2\Rightarrow y=30\)

\(\frac{z}{21}=3\Rightarrow z=63\)

11 tháng 7 2019

b, Tự làm

c, \(5x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{5}\)

\(2x=3z\Leftrightarrow\frac{x}{3}=\frac{z}{2}\)

\(\Leftrightarrow\frac{x}{2}=\frac{y}{5};\frac{x}{3}=\frac{z}{2}\)

\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{x}{6}=\frac{z}{10}\)

\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)

Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=k(k\inℤ)\)

\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\)

\(\Leftrightarrow x\cdot y=6k\cdot15k=90\)

\(\Leftrightarrow90:k^2=90\Leftrightarrow k^2=1\Leftrightarrow k=\pm1\)

\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=15\\z=10\end{cases}}\)hay \(\hept{\begin{cases}x=-6\\y=-15\\z=-10\end{cases}}\)

Vậy \((x,y)\in(6,15);(-6,-15)\)

khó quá 

k nhé tớ k lại cho 

hihihiihih ^_^ ~ hihihihihih 

18 tháng 2 2020

 Vì \(\left(3x-2y\right)^{100}\ge0\forall x,y\inℤ\)

       \(|5y-6z|\ge0\forall y,z\inℤ\Rightarrow|5y-6z|^{153}\ge0\forall y,z\inℤ\)

Nên \(\Rightarrow\hept{\begin{cases}(3x-2y)^{100}=0\\|5y-6z|^{153}=0\end{cases}}\Rightarrow\hept{\begin{cases}3x-2y=0\\5y-6z=0\end{cases}}\Rightarrow\hept{\begin{cases}3x=2y\\5y=6z\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{6}=\frac{z}{5}\end{cases}}}\)

Từ \(\frac{x}{2}=\frac{y}{3};\frac{y}{6}=\frac{z}{5}\)suy ra\(\frac{x}{4}=\frac{y}{6}=\frac{z}{5}\)

 Ta có

 \(\frac{x}{4}=\frac{y}{6}=\frac{z}{5}=\frac{2x}{8}=\frac{5y}{30}=\frac{3z}{15}=\frac{2x-5y+3z}{8-30+15}=\frac{56}{-7}=-8\)

Do đó 

\(\frac{x}{4}=-8\Rightarrow x=-32\)

\(\frac{y}{6}=-8\Rightarrow y=-48\)

\(\frac{z}{5}=-8\Rightarrow z=-40\)

    Vậy \(x=-32;y=-48;z=-40\)

14 tháng 8 2021

=)))))))))))))))))))))))))))))))))))))))))))))))))))))))

29 tháng 10 2015
  1. Ta có: 3x-2y/37=5y-3z/15=2z-5x/2

 Áp dụng tính chất dãy tỉ số bằng nhau: 3x-2y/37=5y-3z/15=2z-5x/2=0

Suy ra 3x-2y=0 thì 3x=2y thì x/2=y/3

5y-3z=0 thì 5y=3z thì y/3=z/5

2z-5x=0 thì 2z= 5x thì z/5=x/2

Suy ra: x/2=y/3=z/5

 Áp dụng tính chất dãy tỉ số bằng nhau:  x/2=y/3=z/5=(10x-3y-2z)/(20-9-10)=-4/1=-4

Suy ra x=-8       y=-12       z=-20

 

 

6 tháng 10 2017

(3x-2y)/37=(5y-3z)/15 <=> 45x-30y=185y-111z <=> 452x-215y+111z=0 (1)
(5y-3z)/15=(2z-5x)/2 <=> 10y+6z=-75x+30z <=> 75x+10y-36z=0 (2)
10x-3y-2z=-4 (3)
Giải hệ (1), (2), (3) ta được: x=-8, y=-12, z=-20