Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(y=k_1\cdot x\)
\(x=k_2\cdot z\)
\(\Leftrightarrow k_2\cdot z=\dfrac{y}{k_1}\)
\(\Leftrightarrow y=z\cdot k_1\cdot k_2\)
Vậy: Hệ số tỉ lệ là \(k=k_1\cdot k_2\)
b: Vì x tỉ lệ thuận với y theo hệ số tỉ lệ 0,4
và y tỉ lệ thuận với z theo hệ số tỉ lệ 6
nên x tỉ lệ thuận với z theo hệ số tỉ lệ 2,4
=>x=2,4z
Khi z=5 thì x=12
Khi z=-1/3 thì x=-0,8
Khi z=3/5 thì x=1,44
Gọi tử của ba phân số tối giản là a,b,c
mẫu của ba phân số tối giản là ,d,e,f
Ta có : Tử của ba phân số tối giản tỉ lệ với 3,4,5
=> \dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}3a=4b=5c
mà tổng của chúng là -2 => a+b+c =-2
Áp dụng t/c của dãy tỉ só bằng nhau ,có ;
\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}3a=4b=5c =\dfrac{a+b+c}{3+4+5}=-\dfrac{2}{12}=-\dfrac{1}{6}=3+4+5a+b+c=−122=−61
\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{3}=-\dfrac{1}{6}\Rightarrow a=-\dfrac{1}{2}\\\dfrac{b}{4}=\dfrac{-1}{6}\Rightarrow b=-\dfrac{2}{3}\\\dfrac{c}{5}=-\dfrac{1}{6}\Rightarrow c=-\dfrac{5}{6}\end{matrix}\right.⇒⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧3a=−61⇒a=−214b=6−1⇒b=−325c=−61⇒c=−65
Tương tự ta tìm được mẫu của ba phân số tối giản lần lượt là d = -\dfrac{12}{13};e=-\dfrac{8}{13};f=-\dfrac{6}{13}−1312;e=−138;f=−136
Vậy ba phân số tối giản là \dfrac{a}{d}=da= \dfrac{6}{13};\dfrac{b}{e}=\dfrac{16}{39};\dfrac{c}{f}=\dfrac{5}{13}136;eb=3916;fc=135
Theo bài ra ta có:
y tỉ lệ nghịch với x theo hệ số tỉ lệ 0,8
\(\Rightarrow y=\frac{0,8}{x}\left(1\right)\)
x tỉ lệ nghịch với z theo hệ số tỉ lệ 0,5
\(\Rightarrow x=\frac{0,5}{z}\left(2\right)\)
Thay (2) vào (1) ta có: \(y=\frac{0,8}{\frac{0,5}{z}}=0,8\cdot\frac{z}{0,5}=1,6z\)
Vậy y tỉ lệ thuận với z và hệ số tỉ lệ là 1,6
gọi 2 phân số đó là \(\frac{a}{b}\) và \(\frac{c}{d}\)
theo đề ta có:
\(\frac{a}{b}-\frac{c}{d}=\frac{3}{196}\) (1)
\(\frac{a}{c}=\frac{3}{5}=>a=\frac{3c}{5}\) (2)
\(\frac{b}{d}=\frac{4}{7}=>b=\frac{4d}{7}\) (3)
lấy (2) và (3) thay vào (1) ta có:
\(\frac{21c}{20d}-\frac{c}{d}=\frac{3}{196}\)
\(=>\frac{c}{d}=\frac{16}{49}\)
thay vào (1): \(\frac{a}{b}=\frac{9}{28}\)
=> 2 phân số cần tìm là \(\frac{15}{49}va\frac{9}{28}\)
Gọi 2 phân số cần tìm là a/b và c/d.
- Giả sử a/b > c/d
Theo đề bài, ta có:
{a : c = 3 : 5
{b : d = 4 : 7
<=> Tỉ số của 2 phân số là: a/b : c/d = 3/4 : 5/7
<=> a/b . d/c = 3/4 . 7/5
<=> ad / bc = 21/20
<=> ad = 21/20 . bc = (21bc)/20
Ta lại có:
a/b - c/d = (ad - bc)/bd = 3/196
<=> [(21bc) / 20 - bc] / bd = 3/196
<=> [(21bc) / 20] / bd - bc / bd = 3/196
<=> (21bc) / 20 . 1 / bd - bc / bd = 3/196
<=> 21c / 20d - c / d = 3/196
<=> 21c / 20d - 20c / 20d = 3/196
<=> c / 20d = 3/196
=> c : 3 và 20d : 196 => c : 3 và d : 196/20 => c : 3 và d : 49/5
<=> c/d = 3 : 49/5 = 3 . 5 : 49 = 15/49
=> c = 15 ; d = 49
=> a : c = 3 : 5 => a : 15 = 3 : 5 => a = 9
và b : d = 4 : 7 => b : 49 = 4 : 7 => b = 28
=> a/b = 9/28 và c/d = 15/49
Thử lại, a/b - c/d = 9/28 - 15/49 = 3/196 (đúng theo yêu cầu đề bài)
- Do đó, 2 phân số cần tìm là 9/28 và 3/196
1
2x . 3=3y .4
=> x=2y=>\(\frac{x}{2}=y\Rightarrow\frac{x}{4}=\frac{y}{2}\)
\(\frac{x}{4}=\frac{z}{5}\)
\(\Rightarrow\frac{x}{4}=\frac{y}{2}=\frac{z}{5}=\frac{x-2y+3z}{4-4+15}=\frac{1}{15}=\)
x=1/15x4=4/15
y=1/15x2=2/15
z=1/15x6=1/10
\(\Rightarrow x-y-z=\frac{4}{15}-\frac{2}{15}-\frac{1}{10}=\frac{1}{30}\)
\(\left(2x-3\right)^2-2\left(3x+1\right)^2=2x\left(x-2\right)+\left(x-1\right)\left(x+2\right)\)
4\(x^2\)-12x+9-2(9\(x^2\)+6x+1)=2\(x^2\)-4x+\(x^2\)+2x-x-2
4\(x^2\)-12x+9-18\(x^2\)-12x-2=2\(x^2\)-4x+\(x^2\)+2x-x-2
(4\(x^2\)-18\(x^2\)-2\(x^2\)-\(x^2\)) +(-12x-12x+4x-2x+x)+(9-2+2)=0
-17\(x^2\)-21x+9=0
AI ĐÚNG MK KS