Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )
A. dk \(\hept{\begin{cases}y+z+1\ne0\\x+z+1\ne0\\x+y\ne2\end{cases}}\)
Ap dung tinh chat day ti so bang nhau ta co
\(\frac{x}{y+z+1}=\frac{y}{x+z+1}\frac{z}{x+y-2}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\) (1)
=> \(x+y+z=\frac{1}{2}\) (*) => y+z =1/2 - x
(1) suy ra \(y+z+1=2x\)
<=> \(\frac{1}{2}-x+1=2x\Rightarrow x=\frac{1}{2}\)
thay vao (*) => y+z=0
tu (1) lai suy ra \(x+z+1=2y\)
<=> \(\hept{\begin{cases}z+y=0\\\frac{1}{2}+z+1=2y\end{cases}\Rightarrow\hept{\begin{cases}z=\frac{-1}{2}\\y=\frac{1}{2}\end{cases}}}\)
vay \(\left\{x;y;z\right\}=\left\{\frac{1}{2};\frac{1}{2};\frac{-1}{2}\right\}\)
b, \(\left(x-11+y\right)^2+\left(x-y+4\right)^2=0\)
<=> \(\hept{\begin{cases}x-11+y=0\\x-y-4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{15}{2}\\y=\frac{7}{2}\end{cases}}}\)
Vay \(\left\{x;y\right\}=\left\{\frac{15}{2};\frac{7}{2}\right\}\)
tìm x,y,z thuộc Q biết :
a)x(x-y+z)=-11
y(y-z-x)=25
z(z+x-y)=35
b)(c+2) mũ 2+(y-3) mũ 4 +(z-5) mũ 6 =0
Dùng tính chất tỉ lệ thức:
- x+y+z = 0
\(\frac{x}{\left(y+z+1\right)}=\frac{y}{\left(x+z+1\right)}=\frac{z}{\left(x+y-2\right)}=0\Rightarrow x=y=z=0\)
Áp dụng tính chất tỉ lệ thức:
\(x+y+z=\frac{x}{\left(y+z+1\right)}=\frac{y}{\left(x+z+1\right)}=\frac{z}{\left(x+y-2\right)}=\left(\frac{x+y+z}{2x+2y+2z}\right)=\frac{1}{2}\)
=> x+y+z = \(\frac{1}{2}\)
+) \(2x=y+z+1=\frac{1}{2}-x+1\Rightarrow x=\frac{1}{2}\)
+) \(2y=x+z+1=\frac{1}{2}-y+1\Rightarrow y=\frac{1}{2}\)
+) \(z=\frac{1}{2}-\left(x+y\right)=\frac{1}{2}-1=\frac{-1}{2}\)
TA CÓ: \(\frac{x}{z+y+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=\frac{x+y+z}{z+y+1+x+z+1+x+y-2}=\frac{1.\left(x+y+z\right)}{\left(1+1-2\right)+2x+2y+2z}\)
\(=\frac{1.\left(x+y+z\right)}{0+2.\left(x+y+z\right)}=\frac{1.\left(x+y+z\right)}{2.\left(x+y+z\right)}=\frac{1}{2}\)
\(\Rightarrow x+y+z=\frac{1}{2}\)
\(\Rightarrow\frac{x}{z+y+1}=\frac{1}{2}\)\(\Rightarrow2x=z+y+1\)\(\Rightarrow3x=x+z+y+1\)\(\Rightarrow3x=\frac{1}{2}+1\Rightarrow3x=\frac{3}{2}\Rightarrow x=\frac{1}{2}\)
\(\frac{y}{x+z+1}=\frac{1}{2}\)\(\Rightarrow2y=x+z+1\Rightarrow3y=y+x+z+1\Rightarrow3y=\frac{1}{2}+1=\frac{3}{2}\Rightarrow y=\frac{1}{2}\)
\(\frac{z}{x+y-2}=\frac{1}{2}\)\(\Rightarrow2z=x+y-2\Rightarrow3z=x+y+z-2\Rightarrow3z=\frac{1}{2}-2=\frac{-3}{2}\Rightarrow z=\frac{-1}{2}\)
VẬY X= 1/2; Y= 1/2 ; Z= -1/2
CHÚC BN HỌC TỐT!!!!!!
x-y+z=2 (1)
x+y-z=0 (2)
-x+y+z=4 (3)
Cộng vế theo vế của (1),(2) và (3) ta được:
x-y+z+x+y-z-x+y+z=6
=>x+y+z=6 (4)
Từ -x+y+z=4=>y+z=4+x
Trừ (4) cho (1),vế theo vế:
x+y+z-x+y-z=4
=>2y=4=>y=2
Trừ (4) cho (2),vế theo vế:
x+y+z-x-y+z=6
=>2z=6=>z=3
Mà y+z=4+x=>4+x=2+3=5=>x=1
Vậy x=1;y=2;z=3
giải hệ ta được : x=1
y=2
z=3