K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2018

nếu giá trị biểu thức của các giá trị tuyệt đối băng 0 thì các số hạng phải bằng 0

 xét :  \(x-\frac{1}{2}\)=0

          x=0+\(\frac{1}{2}\)=\(\frac{1}{2}\)

xét  \(y+\frac{2}{3}\)=0

       y=0-\(\frac{2}{3}\)=\(\frac{-2}{3}\)

xét \(x^2\)+xz=0

      \(\frac{1}{2}^2\)+\(\frac{1}{2}\).z=0

       \(\frac{1}{2}.z=0\)-\(\frac{1}{2}^2\)

        \(\frac{1}{2}.z=0-\frac{1}{4}=-\frac{1}{4}\)

         z=\(\frac{-1}{4}\):\(\frac{1}{2}\)

        z=\(\frac{-1}{2}\)

  vậy x=\(\frac{1}{2}\)  ;y=\(\frac{-2}{3}\)     ;z=\(\frac{-1}{2}\)

     

8 tháng 12 2016

Đặt \(A=\left|x-\frac{1}{2}\right|+\left|y+\frac{2}{3}\right|+\left|x^2+xz\right|\)

\(\left|x-\frac{1}{2}\right|\ge0,\left|y+\frac{2}{3}\right|\ge0,\left|x^2+xz\right|\ge0\Rightarrow\left|x-\frac{1}{2}\right|+\left|y+\frac{2}{3}\right|+\left|x^2+xz\right|\ge0\)

Mà VP=0

\(\Rightarrow A=0\Leftrightarrow\left|x-\frac{1}{2}\right|=0\Leftrightarrow x=\frac{1}{2},\left|y+\frac{2}{3}\right|=0\Leftrightarrow y=-\frac{2}{3}\)

\(\Leftrightarrow\left|\left(\frac{1}{2}\right)^2+\frac{1}{2}z\right|=0\Leftrightarrow\left|\frac{1}{4}+\frac{1}{2}z=0\right|\Leftrightarrow\frac{1}{2}z=-\frac{1}{4}\Leftrightarrow z=-\frac{1}{2}\)

Vậy \(x=\frac{1}{2},y=-\frac{2}{3},z=-\frac{1}{2}\)

 

8 tháng 12 2016

ta có

x-1/2=0

x=1/2

ta có

y+2/3=0

y=-2/3

ta có: x^2+xz=0

thay số:(1/2)^2+1/2*z=0

1/4+1/2*z=0

1/2*z=-1/4

z=-1/4:1/2

z=1/2

Vậy x=1/2 ;y=-2/3; z=1/2


 

9 tháng 4 2019

Online Math là nhất

em yêu em Online Math

9 tháng 4 2019

Ta có :

\(\hept{\begin{cases}|x-\frac{1}{2}|\ge0\\|y+\frac{2}{3}|\ge0\\|x^2+xz|\ge0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}|x-\frac{1}{2}|+|y+\frac{2}{3}|+|x^2+xz|=0\\|x-\frac{1}{2}|+|y+\frac{2}{3}|+|x^2+xz|>0\end{cases}}\)

Theo đề  \(\Rightarrow|x-\frac{1}{2}|+|y+\frac{2}{3}|+|x^2+xz|>0\)( loại )

\(\Rightarrow\hept{\begin{cases}|x-\frac{1}{2}|=0\\|y+\frac{2}{3}|=0\\|x^2+xz|=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{-2}{3}\\\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}.z\right)=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{-2}{3}\\z=\frac{-1}{3}\end{cases}}\)

25 tháng 9 2018

\(\left|x-\frac{1}{2}\right|+\left|y+\frac{2}{3}\right|+\left|x^2+xz\right|=0\)

\(\Leftrightarrow\)\(\left|x-\frac{1}{2}\right|+\left|y+\frac{2}{3}\right|+\left|x\left(x+z\right)\right|=0\)

Ta có : 

\(\left|x-\frac{1}{2}\right|\ge0\)

\(\left|y+\frac{2}{3}\right|\ge0\)

\(\left|x\left(x+z\right)\right|\ge0\)

Mà \(\left|x-\frac{1}{2}\right|+\left|y+\frac{2}{3}\right|+\left|x\left(x+z\right)\right|=0\)

\(\Rightarrow\)\(\hept{\begin{cases}\left|x-\frac{1}{2}\right|=0\\\left|y+\frac{2}{3}\right|=0\\\left|x\left(x+z\right)\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{-2}{3}\\z=\frac{-1}{2}\end{cases}}}\)

Vậy \(x=\frac{1}{2}\)\(;\)\(y=\frac{-2}{3}\) và \(z=\frac{-1}{2}\)

Chúc bạn học tốt ~ 

26 tháng 8 2020

1) Ta có: \(\left|2x-1\right|-x=4\)

\(\Leftrightarrow\left|2x-1\right|=x+4\)

\(\Leftrightarrow\orbr{\begin{cases}2x-1=x+4\\2x-1=-x-4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\\3x=-3\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-1\end{cases}}\)

2) Ta thấy: \(\hept{\begin{cases}\left|x-\frac{1}{2}\right|\ge0\\\left|y+\frac{2}{3}\right|\ge0\\\left|x^2+xz\right|\ge0\end{cases}\left(\forall x,y,z\right)}\)

=> \(\left|x-\frac{1}{2}\right|+\left|y+\frac{2}{3}\right|+\left|x^2+xz\right|\ge0\left(\forall x,y,z\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left|x-\frac{1}{2}\right|=0\\\left|y+\frac{2}{3}\right|=0\\\left|x^2+xz\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-\frac{2}{3}\\z=-\frac{1}{2}\end{cases}}\)