\(\frac{x}{-2}=\frac{y}{-3}=\frac{z}{5}và2x-3y+z=24\)

b)5...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2019

Violympic toán 7

8 tháng 9 2019

b)

Ta có: \(5x=2y.\)

\(\Rightarrow\frac{x}{y}=\frac{2}{5}\)

\(\Rightarrow\frac{x}{2}=\frac{y}{5}\) (1)

\(3y=2z.\)

\(\Rightarrow\frac{y}{z}=\frac{2}{3}\)

\(\Rightarrow\frac{y}{2}=\frac{z}{3}\) (2)

Từ (1) và (2) => \(\frac{x}{4}=\frac{y}{10}.\)

\(\frac{y}{10}=\frac{z}{15}.\)

=> \(\frac{x}{4}=\frac{y}{10}=\frac{z}{15}\)

=> \(\frac{2x}{8}=\frac{y}{10}=\frac{z}{15}\)\(2x+y+z=99.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{2x}{8}=\frac{y}{10}=\frac{z}{15}=\frac{2x+y+z}{8+10+15}=\frac{99}{33}=3.\)

\(\left\{{}\begin{matrix}\frac{x}{4}=3\Rightarrow x=3.4=12\\\frac{y}{10}=3\Rightarrow y=3.10=30\\\frac{z}{15}=3\Rightarrow z=3.15=45\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(12;30;45\right).\)

Chúc bạn học tốt!

23 tháng 6 2015

a)ta có: x/10 = y/6 = z/21=>5x/50=y/6=2z/42

áp dụng tính chất của dãy tỉ số = nhau ta có:

5x/50=y/6=2z/42=5x+y-2z/50+6-42=28/14=2

suy ra: 5x/50=2=>5x=100=>x=20

y/6=2=>y=12

2z/42=2=>84=>z=42

b)3x = 2y ; 7y = 5z

=>x/2=y/3;y/5=z/7

=>x/10=y/15;y/15=z/21

=>x/10=y/15=z/21

áp dụng tính chất của dãy tỉ số = nhau ta có:

x/10=y/15=z/21=x-y+z/10-15+21=32/16=2

suy ra :

x/10=2=>x=20

y/15=2=>y=30

z/21=2=>z=42

c) x/3 = y/4 ; y/3 = z/5

=>x/9=y/12;y/12=z/20

=>x/9=y/12=z/20

=>2x/18=3y/36=z/20

áp dụng tính chất của dãy tỉ số = nhau ta có:

2x/18=3y/36=z/20=2x-3y+z/18-36+20=6/2=3

suy ra 

2x/18=3=>2x=54=>x=27

3y/36=3=>3y=108=>y=36

z/20=3=>z=60

d)2x/3 = 3y/4 = 4z/5

=>12x/18=12y/16=12z/15

áp dụng tính chất của dãy tỉ số = nhau ta có:

12x/18=12y/16=12z/15=12x+12y+12z/18+16+15=12(x+y+z)/49=49/49=12

suy ra 

12x/18=12=>12x=216=>x=18

12y/16=12=>12y=192=>y=16

12z/15=12=>12z=180=>z=15

d)đặt x-1/2=y-2/3=z-3/4=k

=>x=2k+1

y=3k+2

z=4k+3

thay x=2k+1;y=3k+2;z=4k+3 vào 2x+3x-z=50 ta được:

2(2k+1)+3(3k+2)-(4k+3)=50

4k+2+9k+6-4k-3=50

9k+5=50

9k=45

k=5

=>x=2k+1=2.5+1=11

y=3k+2=3.5+2=17

z=4k+3=4.5+3=23

23 tháng 6 2015

đặt x-1/2=y-2/3=z-3/4=k

=> x=2K+1, y=3k+2, z=4k+3

=>2x+3y-z=4K+2+9k+6-4k-3=9K+5=50

=>K=5

=>x=11, y=17, z=23

chúc học tốt nhé!

22 tháng 6 2015

b) 3x = 2y

=>  x/2 = y/3      (1)

7y = 5z

=> y/5 = z/7       (2)

Từ (1) và (2), có:

     \(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\)\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

áp dụng tính chất của dãy tỉ số bằng nhau, có:

     \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

x/10 = 2            => x = 2 x 10 =20

y/15 = 2            => y = 2 x 15 = 30

z/21 = 2            => z = 2 x 21 = 42

12 tháng 10 2016

\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\\ \frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)

Từ (1);(2) Suy ra \(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất dãy tĩ số bằng nhau:

\(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}=\frac{2x}{18}=\frac{3y}{36}=\frac{z}{15}=\frac{2x-3y+z}{18-36+15}=\frac{6}{-3}=-2\)

Suy ra

x = (-2) . 9 = -18

y = (-2) . 12 = -24

z = (-2) . 15 = -30

 

12 tháng 10 2016

Áp dụng tính chất dãy tỷ số bằng nhau ta có:

\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

Suy ra 

x = 2 . 10 = 20

y = 2 . 6 = 12

z = 2 . 21 = 42

 

16 tháng 7 2018

a) Ta có: x/10=y/6=z/24 và 5x+y—2x=28

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

x/10=y/6=z/24=5x/50+y/6–2x/48= 5x+y—2x/50+6–48=28/ 8

Ta được: x= 10.28/8=35

y= 6.28/8=21

z=24.28/8=84

2 tháng 9 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

29 tháng 9 2016

Đăng từng bài thôi chứ bạn

29 tháng 9 2016

mất công lém

12 tháng 2 2018

a/

\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)\(=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)\(\Rightarrow x=20;y=12;z=42\)

12 tháng 2 2018

b/\(3x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{3};7y=5z\Leftrightarrow\frac{y}{5}=\frac{z}{7}\)\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+20}=2\)

\(\Rightarrow x=20;y=30;z=42\)

3 tháng 1 2018

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)

=> \(\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}\)

=> \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{\left(2x+3y-z\right)-2-6+3}{9}=\frac{50-5}{9}=\frac{45}{9}\)= 5

=> x-1/2 = 5 => x-1=5 => x=6

y-2/3 = 5 => y-2 = 15 => y =17

z-3/4=5 => z-3=20 => z=23

3 tháng 1 2018

Đặt x/2=y/3=z/5=k => x=2k,y=3k,z=5k

Ta có: xyz=2k.3k.5k=30k3 = 810 => k3 = 27 => k=3

=> x=2.3=6

y=3.3=9

z=5.3=15

31 tháng 8 2021

\(a.\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\) và \(2x+3y-z=186\)

Từ \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{3}\times\frac{1}{5}=\frac{y}{4}\times\frac{1}{5}=\frac{x}{15}=\frac{y}{20}\left(1\right)\)

Từ \(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{5}\times\frac{1}{4}=\frac{z}{7}\times\frac{1}{4}=\frac{y}{20}=\frac{z}{28}\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\)\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Đặt \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=k\)

\(\Rightarrow\hept{\begin{cases}x=15k\\y=20k\\z=28k\end{cases}}\)

Lại có : \(2x+3y-z=186\)

Thay vào ta có :

\(2.15k+3.20k-28k=186\)

\(30k+60k-28k=186\)

\(62k=186\)

\(k=3\)

Thay vào ta được :

\(\Rightarrow\hept{\begin{cases}x=15.3=45\\y=20.3=60\\z=28.3=84\end{cases}}\)

Vậy .....

25 tháng 4 2024

1) Tìm x, biết:

a) x:2=y:5 và x+y=21

b) x2=y2𝑥2=𝑦2và x.y=54

c) x:7=y:5 và y-x=12

2) Tím các số x, y, z, biết:

a) x10=y6=z21𝑥10=𝑦6=𝑧21và 5x+y-2z=28

b) x3=y4𝑥3=𝑦4y5=z7𝑦5=𝑧7và 2x+3y-z=124

c) 3x=2y; 7y=5z và x-y+z=32

d) 2x=3x=5z và x+y-z=95

18 tháng 6 2019

#)Giải :

a) Ta có : \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\)

\(\hept{\begin{cases}\frac{x}{15}=3\\\frac{y}{20}=3\\\frac{z}{28}=3\end{cases}\Rightarrow\hept{\begin{cases}x=45\\y=60\\z=84\end{cases}}}\)

Vậy x = 45; y = 60; z = 84

b) Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\Rightarrow\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=2\)

\(\Rightarrow\hept{\begin{cases}y+z+1=2x\left(1\right)\\x+z+2=2y\left(2\right)\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y-3=2z\left(3\right)\\x+y+z=\frac{1}{2}\left(4\right)\end{cases}}\)

\(\left(+\right)x+y+z=\frac{1}{2}\Rightarrow y+z=\frac{1}{2}-z\)

Thay (1) vào (+) ta được :

\(\frac{1}{2}-x+1=2x\Rightarrow\frac{3}{2}=3x\Rightarrow x=\frac{1}{2}\)

\(\left(+_2\right)x+y+z=\frac{1}{2}\Rightarrow x+z=\frac{1}{2}-y\)

Thay (2) và (+2) ta được :

\(\frac{1}{2}-y+2=2y\Rightarrow\frac{5}{2}=3y\Rightarrow y=\frac{5}{6}\)

\(\left(+_3\right)x+y+z=\frac{1}{2}+\frac{5}{6}+z=\frac{1}{2}\Rightarrow\frac{4}{3}+z=\frac{1}{2}\Rightarrow z=\frac{-5}{6}\)

Vậy \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=\frac{-5}{6}\end{cases}}\)

18 tháng 6 2019

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)

\(\Rightarrow x=2k;y=3k;z=5k\)

\(\Rightarrow xyz=2k\cdot3k\cdot5k=30k^3\)

Mà \(xyz=810\Rightarrow30k^3=810\)

\(\Rightarrow k^3=27\)

\(\Rightarrow k=3\)

Thay vào tìm x,,z.