K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2017

a) Đặt \(\dfrac{x}{12}=\dfrac{y}{9}=\dfrac{z}{5}=k\Rightarrow\left\{{}\begin{matrix}x=12k\\y=9k\\z=5k\end{matrix}\right.\left(1\right)\)

Ta có: xyz = 20 => 12k . 9k . 5k = 20

=> \(k^3.540=20\)

=> \(k^3=\dfrac{1}{27}\)

=> k = \(\dfrac{1}{3}\)

Thay \(k=\dfrac{1}{3}\) vào (1) ta có: x = 4; y = 3; z = \(\dfrac{5}{3}\)

a) Từ \(\dfrac{x}{y}=\dfrac{9}{7}\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}\) (1)

Từ \(\dfrac{y}{z}=\dfrac{7}{3}\Rightarrow\dfrac{y}{7}=\dfrac{z}{3}\) (2)

Từ (1) và (2) =>\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x-y+z}{9-7+3}=\dfrac{-15}{5}=-3\)

\(\Rightarrow\left\{{}\begin{matrix}x=-3\cdot9\\y=-3\cdot7\\z=-3\cdot3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-27\\y=-21\\z=-9\end{matrix}\right.\)

b) Từ \(\dfrac{x}{y}=\dfrac{7}{20}\Rightarrow\dfrac{x}{7}=\dfrac{y}{20}\) (1)

Từ \(\dfrac{y}{z}=\dfrac{5}{8}\Rightarrow\dfrac{y}{5}=\dfrac{z}{8}\Rightarrow\dfrac{y}{20}=\dfrac{z}{32}\) (2)

Từ (1) và (2) =>\(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}=\dfrac{2x}{14}=\dfrac{5y}{100}=\dfrac{2z}{64}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}=\dfrac{2x}{14}=\dfrac{5y}{100}=\dfrac{2z}{64}=\dfrac{2x+5y-2z}{14+100-64}=\dfrac{100}{50}=2\)

\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot7\\y=2\cdot20\\z=2\cdot32\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=14\\y=40\\z=64\end{matrix}\right.\)

c) Đặt \(\dfrac{x}{12}=\dfrac{y}{9}=\dfrac{z}{5}=k\)

=> \(x=12k\) ; \(y=9k\) ;\(z=5k\)

=> xyz = \(12k\cdot9k\cdot5k\) =\(540\cdot k^3\) = 20

=>\(k^3=20:540=\dfrac{1}{27}=\left(\dfrac{1}{3}\right)^3\)

=>\(k=\dfrac{1}{3}\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\cdot12\\y=\dfrac{1}{3}\cdot9\\z=\dfrac{1}{3}\cdot5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4\\y=3\\z=\dfrac{5}{3}\end{matrix}\right.\)

d) Từ \(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}\Rightarrow\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}=\dfrac{x^2+y^2+z^2}{25+49+9}=\dfrac{585}{83}\)

\(\Rightarrow\left\{{}\begin{matrix}x^2=\dfrac{585}{83}\cdot25\\y^2=\dfrac{585}{83}\cdot49\\z^2=\dfrac{585}{83}\cdot9\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x^2=\\y^2=\\z^2=\end{matrix}\right.\) đề bài sai nên ko tìm được x ; y ; z

\(\frac{a}{3}=\frac{b}{2};\frac{b}{7}=\frac{c}{5}\)

Vì \(\frac{a}{3}=\frac{b}{2};\frac{b}{7}=\frac{c}{5}\)

=> \(\frac{a}{3}=\frac{b}{2}\Rightarrow\frac{a}{21}=\frac{b}{14}\)(1)

   \(\frac{b}{7}=\frac{c}{5}\Rightarrow\frac{b}{14}=\frac{c}{10}\)(2)

Từ (1) và (2) \(\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)

\(\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\Rightarrow\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}\)

Theo tính chất dãy tỉ số bằng nhau:

\(\Rightarrow\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}\Rightarrow\frac{3a-7b+5c}{63-98+50}=\frac{30}{15}=2\)

Do đó: \(\Rightarrow\hept{\begin{cases}\frac{a}{21}=2\Rightarrow a=42\\\frac{b}{14}=2\Rightarrow b=28\\\frac{c}{10}=2\Rightarrow c=20\end{cases}}\)

Vậy: a = 42

        b = 28

        c = 20

27 tháng 10 2018

Bài 1: 

a) 

Ta có: \(\frac{a}{3}=\frac{b}{2}\)

\(\Rightarrow\frac{a}{3}.\frac{1}{7}=\frac{b}{2}.\frac{1}{7}\)

\(\Rightarrow\frac{a}{21}=\frac{b}{14}\)

Và: \(\frac{b}{7}=\frac{c}{5}\)

=> \(\frac{b}{7}.\frac{1}{2}=\frac{c}{5}.\frac{1}{2}\)

=> \(\frac{b}{14}=\frac{c}{10}\)

Do đó: \(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)

Áp dụng tính chất dãy tỉ số bằng nhau; ta có: 

\(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)\(=\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}=\frac{3a-7b-5c}{63-98-50}\)\(=\frac{30}{-85}\)\(=-\frac{6}{17}\)

+) Với \(\frac{a}{21}=-\frac{6}{17}\Rightarrow a=-\frac{126}{17}\)

+) Với \(\frac{b}{14}=-\frac{6}{17}\Rightarrow b=-\frac{84}{17}\)

+)Với \(\frac{c}{10}=-\frac{6}{17}\Rightarrow c=-\frac{60}{17}\)

Vậỵ:..........

b)

Ta có: 7a = 9b = 21c

=> 7a/63 = 9b/63 = 21c/63

=> a/9 = b/7 = c/3

Áp dụng tính chất dãy tỉ số bằng nhau; ta có:

a/9 = b/7 = c/3 = (a-b+c) / (9-7+3) = -15/5 = -3

+) a/9 = -3 => a = -27

+) b/7 = -3 => b = -21

+) c/3 = -3 => c = -9 

Vậy:..............

Bài 2: 

a) Theo bài: x:y:z = 5:3:4

=> x/5 = y/3 = z/4

Áp dụng tính chất dãy tiwr số bằng nhau; ta có:

x/5 = y/3 = z/4 = ( x + 2y -z ) / ( 5 + 2.5 - 4 ) = -121 / 11 = -11

+) Với x/5 = -11 => x=-55

+) Với y/3 = -11 => y = -33

+) Với z/4 = -11 => z = -44

Vậy:......

b) _ Tương tự câu a) ở bài 1

c) 

Ta đặt: x/3 = y/12 = z/5 = k          ( \(k\inℤ\))

=> \(\hept{\begin{cases}x=3k\\y=12k\\z=5k\end{cases}}\)

Theo bài: xyz = 22,5

=> 3k.12k.5k = 22,5

=> 180.k3 = 22,5

=> k3 = 1/8 = (1/2)3

=> k = 1/2

Với k = 1/2 => x = 3/2; y = 6; z = 5/2

Vậy:..........

d)

6 tháng 10 2017

ooooooooooooooooo

25 tháng 11 2015

a)x/4=y/3=z/9

nên x/4=3y/9=4z/36

Áp dụng tính chất dãy tỉ số bằng nhau, ta được:

\(\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}=\frac{z-3y+4z}{4-9+36}=\frac{62}{31}=2\)

Do đó, x/4=2 nên x=4*2=8

         y/3=2 nên x=2*3=6

         z/9=2 nên z=9*2=18

b)Gọi x/12=y/9=z/5=k nên x=12k; y=9k; z=5k

=>x*y*z=12k*9k*5k=(12*9*5)*k3=540*k3

mà x*y*z=20 nên 540*k3=20

k3=20/540=1/27=(1/3)^3

=>k=1/3

=>x=12*1/3=4

    y=9*1/3=3

    z=5*1/3=5/3

c)x/5=y/7=z/3 nên x2/25=y2/49=z2/9

Áp dụng tc dãy tỉ số bằng nhau, ta được:

 x2/25=y2/49=z2/9=\(\frac{x^2+y^2-z^2}{25+49-9}=\frac{585}{65}=9\)

Do đó, x2/25=9 nên x2=9*25=225=152=(-15)2

                       nên x=15 hoặc x=-15

         y2/49=9 nên y2=9*49=441=212=(-21)2

                       nên y=21 hoặc y=-21

         z2/9=9 nên z2=9*9=92 =(-9)2

                       nên z=9 hoặc z=-9

4 tháng 8 2017

đặt \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\)

\(\Rightarrow x=12k;y=9k;z=5k\)

Mà xyz = 20

\(\Rightarrow\)12k . 9k . 5k = 20

\(\Rightarrow\)540k3 = 20

\(\Rightarrow\)k3 = \(\frac{1}{27}\)

\(\Rightarrow\)k = ( -3 )

\(\Rightarrow\)x = -36 ; y = -27 ; z = -15

4 tháng 8 2017

Ta có:

\(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}\Leftrightarrow x=12k;y=9k;z=5k\) và \(xyz=20\)

\(\Rightarrow12k.9k.5k=20\)

\(\Rightarrow540k^3=20\Leftrightarrow k=\sqrt[3]{20:540}=\frac{1}{3}\)

\(\hept{\begin{cases}x=12.\frac{1}{3}=4\\y=9.\frac{1}{3}=3\\z=5.\frac{1}{3}=\frac{5}{3}\end{cases}}\)

Vậy x = 4; y = 3 ; z = 5/3

15 tháng 10 2016

Ta có: \(\left[\begin{array}{nghiempt}xyz=20\\\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\end{array}\right.\)

\(\Rightarrow\left[\begin{array}{nghiempt}xyz=20\\x=12k\\y=9k\\z=5k\end{array}\right.\)

\(\Rightarrow xyz=12k.9k.5k=540k^3\)

\(\Rightarrow20=540k^3\)

\(\Rightarrow k^3=\frac{20}{540}=\frac{1}{27}\Rightarrow k^3=\left(\frac{1}{3}\right)^3\Rightarrow k=\frac{1}{3}\)

\(\Rightarrow x=12k=12.\frac{1}{3}=4\)

\(\Rightarrow y=9k=9.\frac{1}{3}=3\)

\(\Rightarrow z=5k=\frac{5.1}{3}=\frac{5}{3}\)

 

 

 

15 tháng 10 2016

TA CÓ X/12=Y/9=Z/5 =>X=12K;Y=9K;Z=5K

MÀ XYZ=20=>12K.9K.5K=20 HAY 540\(K^3\)=20

=>\(K^3\)=20/540=1/27=>\(K^3\)=\(\left(\frac{1}{3}\right)^3\)=>K=1/3

TỪ X/12=1/3=>X=4

      Y/9=1/3=>Y=3

      Z/5=1/3=>Z=5/3

VẬY X=4;Y=3;Z=5/3

TICK ĐÚNG CHO MIK NHAok