Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Từ \(\dfrac{x}{y}=\dfrac{9}{7}\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}\) (1)
Từ \(\dfrac{y}{z}=\dfrac{7}{3}\Rightarrow\dfrac{y}{7}=\dfrac{z}{3}\) (2)
Từ (1) và (2) =>\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x-y+z}{9-7+3}=\dfrac{-15}{5}=-3\)
\(\Rightarrow\left\{{}\begin{matrix}x=-3\cdot9\\y=-3\cdot7\\z=-3\cdot3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-27\\y=-21\\z=-9\end{matrix}\right.\)
b) Từ \(\dfrac{x}{y}=\dfrac{7}{20}\Rightarrow\dfrac{x}{7}=\dfrac{y}{20}\) (1)
Từ \(\dfrac{y}{z}=\dfrac{5}{8}\Rightarrow\dfrac{y}{5}=\dfrac{z}{8}\Rightarrow\dfrac{y}{20}=\dfrac{z}{32}\) (2)
Từ (1) và (2) =>\(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}=\dfrac{2x}{14}=\dfrac{5y}{100}=\dfrac{2z}{64}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}=\dfrac{2x}{14}=\dfrac{5y}{100}=\dfrac{2z}{64}=\dfrac{2x+5y-2z}{14+100-64}=\dfrac{100}{50}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot7\\y=2\cdot20\\z=2\cdot32\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=14\\y=40\\z=64\end{matrix}\right.\)
c) Đặt \(\dfrac{x}{12}=\dfrac{y}{9}=\dfrac{z}{5}=k\)
=> \(x=12k\) ; \(y=9k\) ;\(z=5k\)
=> xyz = \(12k\cdot9k\cdot5k\) =\(540\cdot k^3\) = 20
=>\(k^3=20:540=\dfrac{1}{27}=\left(\dfrac{1}{3}\right)^3\)
=>\(k=\dfrac{1}{3}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\cdot12\\y=\dfrac{1}{3}\cdot9\\z=\dfrac{1}{3}\cdot5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4\\y=3\\z=\dfrac{5}{3}\end{matrix}\right.\)
d) Từ \(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}\Rightarrow\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}=\dfrac{x^2+y^2+z^2}{25+49+9}=\dfrac{585}{83}\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=\dfrac{585}{83}\cdot25\\y^2=\dfrac{585}{83}\cdot49\\z^2=\dfrac{585}{83}\cdot9\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x^2=\\y^2=\\z^2=\end{matrix}\right.\) đề bài sai nên ko tìm được x ; y ; z
\(\frac{a}{3}=\frac{b}{2};\frac{b}{7}=\frac{c}{5}\)
Vì \(\frac{a}{3}=\frac{b}{2};\frac{b}{7}=\frac{c}{5}\)
=> \(\frac{a}{3}=\frac{b}{2}\Rightarrow\frac{a}{21}=\frac{b}{14}\)(1)
\(\frac{b}{7}=\frac{c}{5}\Rightarrow\frac{b}{14}=\frac{c}{10}\)(2)
Từ (1) và (2) \(\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)
\(\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\Rightarrow\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}\)
Theo tính chất dãy tỉ số bằng nhau:
\(\Rightarrow\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}\Rightarrow\frac{3a-7b+5c}{63-98+50}=\frac{30}{15}=2\)
Do đó: \(\Rightarrow\hept{\begin{cases}\frac{a}{21}=2\Rightarrow a=42\\\frac{b}{14}=2\Rightarrow b=28\\\frac{c}{10}=2\Rightarrow c=20\end{cases}}\)
Vậy: a = 42
b = 28
c = 20
Bài 1:
a)
Ta có: \(\frac{a}{3}=\frac{b}{2}\)
\(\Rightarrow\frac{a}{3}.\frac{1}{7}=\frac{b}{2}.\frac{1}{7}\)
\(\Rightarrow\frac{a}{21}=\frac{b}{14}\)
Và: \(\frac{b}{7}=\frac{c}{5}\)
=> \(\frac{b}{7}.\frac{1}{2}=\frac{c}{5}.\frac{1}{2}\)
=> \(\frac{b}{14}=\frac{c}{10}\)
Do đó: \(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau; ta có:
\(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)\(=\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}=\frac{3a-7b-5c}{63-98-50}\)\(=\frac{30}{-85}\)\(=-\frac{6}{17}\)
+) Với \(\frac{a}{21}=-\frac{6}{17}\Rightarrow a=-\frac{126}{17}\)
+) Với \(\frac{b}{14}=-\frac{6}{17}\Rightarrow b=-\frac{84}{17}\)
+)Với \(\frac{c}{10}=-\frac{6}{17}\Rightarrow c=-\frac{60}{17}\)
Vậỵ:..........
b)
Ta có: 7a = 9b = 21c
=> 7a/63 = 9b/63 = 21c/63
=> a/9 = b/7 = c/3
Áp dụng tính chất dãy tỉ số bằng nhau; ta có:
a/9 = b/7 = c/3 = (a-b+c) / (9-7+3) = -15/5 = -3
+) a/9 = -3 => a = -27
+) b/7 = -3 => b = -21
+) c/3 = -3 => c = -9
Vậy:..............
Bài 2:
a) Theo bài: x:y:z = 5:3:4
=> x/5 = y/3 = z/4
Áp dụng tính chất dãy tiwr số bằng nhau; ta có:
x/5 = y/3 = z/4 = ( x + 2y -z ) / ( 5 + 2.5 - 4 ) = -121 / 11 = -11
+) Với x/5 = -11 => x=-55
+) Với y/3 = -11 => y = -33
+) Với z/4 = -11 => z = -44
Vậy:......
b) _ Tương tự câu a) ở bài 1
c)
Ta đặt: x/3 = y/12 = z/5 = k ( \(k\inℤ\))
=> \(\hept{\begin{cases}x=3k\\y=12k\\z=5k\end{cases}}\)
Theo bài: xyz = 22,5
=> 3k.12k.5k = 22,5
=> 180.k3 = 22,5
=> k3 = 1/8 = (1/2)3
=> k = 1/2
Với k = 1/2 => x = 3/2; y = 6; z = 5/2
Vậy:..........
d)
a)x/4=y/3=z/9
nên x/4=3y/9=4z/36
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}=\frac{z-3y+4z}{4-9+36}=\frac{62}{31}=2\)
Do đó, x/4=2 nên x=4*2=8
y/3=2 nên x=2*3=6
z/9=2 nên z=9*2=18
b)Gọi x/12=y/9=z/5=k nên x=12k; y=9k; z=5k
=>x*y*z=12k*9k*5k=(12*9*5)*k3=540*k3
mà x*y*z=20 nên 540*k3=20
k3=20/540=1/27=(1/3)^3
=>k=1/3
=>x=12*1/3=4
y=9*1/3=3
z=5*1/3=5/3
c)x/5=y/7=z/3 nên x2/25=y2/49=z2/9
Áp dụng tc dãy tỉ số bằng nhau, ta được:
x2/25=y2/49=z2/9=\(\frac{x^2+y^2-z^2}{25+49-9}=\frac{585}{65}=9\)
Do đó, x2/25=9 nên x2=9*25=225=152=(-15)2
nên x=15 hoặc x=-15
y2/49=9 nên y2=9*49=441=212=(-21)2
nên y=21 hoặc y=-21
z2/9=9 nên z2=9*9=92 =(-9)2
nên z=9 hoặc z=-9
đặt \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\)
\(\Rightarrow x=12k;y=9k;z=5k\)
Mà xyz = 20
\(\Rightarrow\)12k . 9k . 5k = 20
\(\Rightarrow\)540k3 = 20
\(\Rightarrow\)k3 = \(\frac{1}{27}\)
\(\Rightarrow\)k = ( -3 )
\(\Rightarrow\)x = -36 ; y = -27 ; z = -15
Ta có:
\(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}\Leftrightarrow x=12k;y=9k;z=5k\) và \(xyz=20\)
\(\Rightarrow12k.9k.5k=20\)
\(\Rightarrow540k^3=20\Leftrightarrow k=\sqrt[3]{20:540}=\frac{1}{3}\)
\(\hept{\begin{cases}x=12.\frac{1}{3}=4\\y=9.\frac{1}{3}=3\\z=5.\frac{1}{3}=\frac{5}{3}\end{cases}}\)
Vậy x = 4; y = 3 ; z = 5/3
Ta có: \(\left[\begin{array}{nghiempt}xyz=20\\\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}xyz=20\\x=12k\\y=9k\\z=5k\end{array}\right.\)
\(\Rightarrow xyz=12k.9k.5k=540k^3\)
\(\Rightarrow20=540k^3\)
\(\Rightarrow k^3=\frac{20}{540}=\frac{1}{27}\Rightarrow k^3=\left(\frac{1}{3}\right)^3\Rightarrow k=\frac{1}{3}\)
\(\Rightarrow x=12k=12.\frac{1}{3}=4\)
\(\Rightarrow y=9k=9.\frac{1}{3}=3\)
\(\Rightarrow z=5k=\frac{5.1}{3}=\frac{5}{3}\)
TA CÓ X/12=Y/9=Z/5 =>X=12K;Y=9K;Z=5K
MÀ XYZ=20=>12K.9K.5K=20 HAY 540\(K^3\)=20
=>\(K^3\)=20/540=1/27=>\(K^3\)=\(\left(\frac{1}{3}\right)^3\)=>K=1/3
TỪ X/12=1/3=>X=4
Y/9=1/3=>Y=3
Z/5=1/3=>Z=5/3
VẬY X=4;Y=3;Z=5/3
TICK ĐÚNG CHO MIK NHA
a) Đặt \(\dfrac{x}{12}=\dfrac{y}{9}=\dfrac{z}{5}=k\Rightarrow\left\{{}\begin{matrix}x=12k\\y=9k\\z=5k\end{matrix}\right.\left(1\right)\)
Ta có: xyz = 20 => 12k . 9k . 5k = 20
=> \(k^3.540=20\)
=> \(k^3=\dfrac{1}{27}\)
=> k = \(\dfrac{1}{3}\)
Thay \(k=\dfrac{1}{3}\) vào (1) ta có: x = 4; y = 3; z = \(\dfrac{5}{3}\)