Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x - y = xy => x = xy + y = y.(x + 1)
=> x : y = x + 1 = x - y
=> y = -1
=> x = -1.(x + 1) = -x - 1
=> x + x = -1
=> 2x = -1 => x = -1/2
Vậy x = -1/2; y = -1
b) x.(x+y+z) + y(x+y+z) + z(x+y+z) = 3 + 9 + 4
=> (x+y+z).(x+y+z)=16
=> x+y+z = 4 hoặc -4
Đến đây bn lm từng trường hợp là ra x; y; z
+) x+y=5(x-y)=5x-5y
5x-x=y+5y
4x=6y
x=1,5y
+)x+y=x:y
hay 1,5y+y=1,5y:y
2,5y=1,5
y=0,6
nên x=0,6x1,5=0,9
Vậy x=0,9 ;y=0,6
x+y=5x-5y
=>4x=6y
=>2x=3y=>x/3=y/2=>x/y=3/2
Đến đây bạn ra rồi x+y=3/2; 5(x-y) = 3/2
Vô vàn cách tìm x;y
x+y=5(x-y) hay x+y=5x-5y
5x-x=y+5y
4x=6y nên x=1,5y
Thay x=1,5y vào x+y=x:y ta có:
1,5y+y=1,5y:y
2,5y=1,5
y=0,6 nên x=1,5x0,6=0,9
Vậy x=0,9 ;y=0,6
Miu Ti làm vớ vẩn
a)Từ \(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
\(\Rightarrow\frac{3x^2}{27}=\frac{2y^2}{32}=\frac{5z^2}{125}\)
Theo t/c dãy tỉ số=nhau:
\(\frac{3x^2}{27}=\frac{2y^2}{32}=\frac{5z^2}{125}=\frac{5z^2-3x^2-2y^2}{125-27-32}=\frac{594}{66}=9\)
\(\)\(\Rightarrow3x^2=9.27=243\Rightarrow x^2=\frac{243}{3}=81\Rightarrow x\in\left\{9;-9\right\}\)
\(2y^2=9.32=288\Rightarrow y^2=\frac{288}{2}=144\Rightarrow y\in\left\{12;-12\right\}\)
\(5z^2=9.125=1125\Rightarrow z^2=\frac{1125}{5}=225\Rightarrow z\in\left\{15;-15\right\}\)
Vậy..............
b)Từ \(x+y=3\left(x-y\right)\Rightarrow3x-3y=x+y\Rightarrow3x-x=y+3y\Rightarrow2x=4y\)
\(\Rightarrow2x=2.2y\Rightarrow x=2y\Rightarrow\frac{x}{y}=2\)
Mà \(x+y=\frac{x}{y}\) (theo đề)
\(\Rightarrow x+y=2\Rightarrow2y+y=2\Rightarrow3y=2\Rightarrow y=\frac{2}{3}\)
khi đó \(x=2y=2.\frac{2}{3}=\frac{4}{3}\)
Vậy x=4/3;y=2/3
a/ Ta có x:y:z=3:4:5
=> \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{5\cdot z^2-3\cdot x^2-2\cdot y^2}{5\cdot5^2-3.3^2-2\cdot4^2}=\frac{594}{66}=9\)
=> x=9.3=27
y=9*4=36
z=9*5=45
b/ Từ từ rồi tui làm
a) \(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{5z^2}{125}=\frac{3x^2}{27}=\frac{2y^2}{32}=\frac{5z^2-3x^2-2y^2}{125-27-32}=\frac{594}{66}=9\)
\(\Rightarrow5z^2=9.125=1125\Rightarrow z^2=225\Rightarrow z=\pm15\)
\(3x^2=9.27=243\Rightarrow x^2=81\Rightarrow x=\pm9\)
\(2y^2=9.32=288\Rightarrow y^2=144\Rightarrow y=\pm12\)
Vậy ....
Từ \(\frac{x}{y}=x.y\Rightarrow x=x.y.y=x.y^2\Rightarrow y^2=\frac{x}{x}=1\Rightarrow y\in\left\{-1;1\right\}\)
+)y=-1
Ta có:3x+(-1)=x.(-1) (vì \(3x+y=x.y\))
=>3x-1=-x=>3x-(-x)=1=>4x=1=>x=\(\frac{1}{4}\)
+)y=1
Ta có:3x+1=x.1
=>3x+1=x=>3x-x=1=>2x=1=>x=\(\frac{1}{2}\))
Vậy \(x\in\left\{\frac{1}{2};\frac{1}{4}\right\};y\in\left\{1;-1\right\}\)